SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Colgan William T.) srt2:(2015)"

Search: WFRF:(Colgan William T.) > (2015)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Charalampidis, Charalampos, 1983-, et al. (author)
  • Changing surface-atmosphere energy exchange and refreezing capacity of the lower accumulation area, West Greenland
  • 2015
  • In: The Cryosphere. - : Copernicus GmbH. - 1994-0416 .- 1994-0424. ; 9:6, s. 2163-2181
  • Journal article (peer-reviewed)abstract
    • We present 5 years (2009-2013) of automatic weather station measurements from the lower accumulation area (1840 m a.s.l. - above sea level) of the Greenland ice sheet in the Kangerlussuaq region. Here, the summers of 2010 and 2012 were both exceptionally warm, but only 2012 resulted in a strongly negative surface mass budget (SMB) and surface meltwater run-off. The observed run-off was due to a large ice fraction in the upper 10 m of firn that prevented meltwater from percolating to available pore volume below. Analysis reveals an anomalously low 2012 summer-averaged albedo of 0.71 (typically similar to 0.78), as meltwater was present at the ice sheet surface. Consequently, during the 2012 melt season, the ice sheet surface absorbed 28% (213 MJ m-2) more solar radiation than the average of all other years. A surface energy balance model is used to evaluate the seasonal and interannual variability of all surface energy fluxes. The model reproduces the observed melt rates as well as the SMB for each season. A sensitivity analysis reveals that 71% of the additional solar radiation in 2012 was used for melt, corresponding to 36% (0.64 m) of the 2012 surface lowering. The remaining 64% (1.14 m) of surface lowering resulted from high atmospheric temperatures, up to a + 2.6 degrees C daily average, indicating that 2012 would have been a negative SMB year at this site even without the melt-albedo feedback. Longer time series of SMB, regional temperature, and remotely sensed albedo (MODIS) show that 2012 was the first strongly negative SMB year, with the lowest albedo, at this elevation on record. The warm conditions of recent years have resulted in enhanced melt and reduction of the refreezing capacity in the lower accumulation area. If high temperatures continue, the current lower accumulation area will turn into a region with superimposed ice in coming years.
  •  
2.
  • Citterio, Michele, et al. (author)
  • Automatic weather stations for basic and applied glaciological research
  • 2015
  • In: Geological Survey of Denmark and Greenland Bulletin. - 1811-4598 .- 1604-8156. ; 33, s. 69-72
  • Journal article (peer-reviewed)abstract
    • Since the early 1980s, the Geological Survey of Denmark and Greenland (GEUS) glaciology group has developed automatic weather stations (AWSs) and operated them on the Greenland ice sheet and on local glaciers to support glaciological research and monitoring projects (e.g. Olesen & Braithwaite 1989; Ahlstrøm et al. 2008). GEUS has also operated AWSs in connection with consultancy services in relation to mining and hydropower pre-feasibility studies (Colgan et al. 2015). Over the years, the design of the AWS has evolved, partly due to technological advances and partly due to lessons learned in the field. At the same time, we have kept the initial goal in focus: long-term, year-round accurate recording of ice ablation, snow depth and the physical parameters that determine the energy budget of glacierised surfaces. GEUS has an extensive record operating AWSs in the harsh Arctic environment of the diverse ablation areas of the Greenland ice sheet, glaciers and ice caps [...].The GEUS AWS model in use now is a reliable tool that is adapted to the environmental and logistical conditions of polar regions. It has a proven record of more than 150 stationyears of deployment in Greenland since its introduction in 2007–2008, and a success rate of c. 90% defined as the fraction of months with more than 80% valid air-temperature measurements over the total deployment time of the 25 stations in the field. The rest of this paper focuses on the technical aspects of the GEUS AWS, and provides an overview of its design and capabilities.
  •  
3.
  • Fausto, Robert S., et al. (author)
  • Greenland ice sheet melt area from MODIS (2000–2014)
  • 2015
  • In: Geological Survey of Denmark and Greenland Bulletin. - 1811-4598 .- 1604-8156. ; 33, s. 57-60
  • Journal article (peer-reviewed)abstract
    • The Greenland ice sheet is an excellent observatory for global climate change. Meltwater from the 1.8 million km2 large ice sheet influences oceanic temperature and salinity, nutrient fluxes and global sea level (IPCC 2013). Surface reflectivity is a key driver of surface melt rates (Box et al. 2012). Mapping of different ice-sheet surface types provides a clear indicator of where changes in ice-sheet surface reflectivity are most prominent. Here, we present an updated version of a surface classification algorithm that utilises NASA’s Moderateresolution Imaging Spectroradiometer (MODIS) sensor on the Terra satellite to systematically monitor ice-sheet surface melt (Fausto et al. 2007). Our aim is to determine the areal extent of three surface types over the 2000–2014 period: glacier ice, melting snow (including percolation areas) and dry snow (Cuff ey & Paterson 2010). Monthly 1 km2 resolution surface-type grids can be downloaded via the CryoClim internet portal (www.cryoclim.net). In this report, we briefly describe the updated classification algorithm, validation of surface types and inter-annual variability in surface types.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view