SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Corbascio Matthias) srt2:(2015-2019)"

Search: WFRF:(Corbascio Matthias) > (2015-2019)

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Asp, Michaela, et al. (author)
  • Spatial detection of fetal marker genes expressed at low level in adult human heart tissue
  • 2017
  • In: Scientific Reports. - : NATURE PUBLISHING GROUP. - 2045-2322. ; 7
  • Journal article (peer-reviewed)abstract
    • Heart failure is a major health problem linked to poor quality of life and high mortality rates. Hence, novel biomarkers, such as fetal marker genes with low expression levels, could potentially differentiate disease states in order to improve therapy. In many studies on heart failure, cardiac biopsies have been analyzed as uniform pieces of tissue with bulk techniques, but this homogenization approach can mask medically relevant phenotypes occurring only in isolated parts of the tissue. This study examines such spatial variations within and between regions of cardiac biopsies. In contrast to standard RNA sequencing, this approach provides a spatially resolved transcriptome- and tissue-wide perspective of the adult human heart, and enables detection of fetal marker genes expressed by minor subpopulations of cells within the tissue. Analysis of patients with heart failure, with preserved ejection fraction, demonstrated spatially divergent expression of fetal genes in cardiac biopsies.
  •  
3.
  • Das, Sarbashis, et al. (author)
  • Transcriptomics of cardiac biopsies reveals differences in patients with or without diagnostic parameters for heart failure with preserved ejection fraction
  • 2019
  • In: Scientific Reports. - : NATURE PUBLISHING GROUP. - 2045-2322. ; 9
  • Journal article (peer-reviewed)abstract
    • Heart failure affects 2-3% of adult Western population. Prevalence of heart failure with preserved left ventricular (LV) ejection fraction (HFpEF) increases. Studies suggest HFpEF patients to have altered myocardial structure and functional changes such as incomplete relaxation and increased cardiac stiffness. We hypothesised that patients undergoing elective coronary bypass surgery (CABG) with HFpEF characteristics would show distinctive gene expression compared to patients with normal LV physiology. Myocardial biopsies for mRNA expression analysis were obtained from sixteen patients with LV ejection fraction >= 45%. Five out of 16 patients (31%) had echocardiographic characteristics and increased NTproBNP levels indicative of HFpEF and this group was used as HFpEF proxy, while 11 patients had Normal LV physiology. Utilising principal component analysis, the gene expression data clustered into two groups, corresponding to HFpEF proxy and Normal physiology, and 743 differentially expressed genes were identified. The associated top biological functions were cardiac muscle contraction, oxidative phosphorylation, cellular remodelling and matrix organisation. Our results also indicate that upstream regulatory events, including inhibition of transcription factors STAT4, SRF and TP53, and activation of transcription repressors HEY2 and KDM5A, could provide explanatory mechanisms to observed gene expression differences and ultimately cardiac dysfunction in the HFpEF proxy group.
  •  
4.
  • Ljung, Karin, et al. (author)
  • Human Fetal Cardiac Mesenchymal Stromal Cells Differentiate In Vivo into Endothelial Cells and Contribute to Vasculogenesis in Immunocompetent Mice
  • 2019
  • In: Stem Cells and Development. - : MARY ANN LIEBERT, INC. - 1547-3287 .- 1557-8534. ; 28:5, s. 310-318
  • Journal article (peer-reviewed)abstract
    • Mesenchymal stromal cells (MSCs) have shown great potential as a treatment for systemic inflammatory diseases, but their local regenerative properties are highly tissue- and site specific. Previous studies have demonstrated that adult human MSCs respond to inflammatory cytokines through the release of paracrine factors that stimulate angiogenesis, but they do not themselves differentiate into vascular structures in vivo. In this study, we used human fetal cardiac MSCs (hfcMSCs) harvested during the first trimester of heart development and injected them into the subcutaneous tissue of normal immunocompetent mice treated with short-term costimulation blockade for tolerance induction. When hfcMSCs were transplanted subcutaneously together with Matrigel matrix, they contributed to vasculogenesis through differentiation into endothelial cells and generation of the basal membrane protein Laminin 4. These characteristics of hfcMSCs are similar to the mesodermal progenitors giving rise to the developing heart and they may be useful for treatment of ischemic injuries.
  •  
5.
  • Simonson, Oscar E., et al. (author)
  • In Vivo Effects of Mesenchymal Stromal Cells in Two Patients With Severe Acute Respiratory Distress Syndrome
  • 2015
  • In: Stem Cells Translational Medicine. - : Oxford University Press (OUP). - 2157-6564 .- 2157-6580. ; 4:10, s. 1199-1213
  • Journal article (peer-reviewed)abstract
    • Mesenchymal stromal cells (MSCs) have been investigated as a treatment for various inflammatory diseases because of their immunomodulatory and reparative properties. However, many basic questions concerning their mechanisms of action after systemic infusion remain unanswered. We performed a detailed analysis of the immunomodulatory properties and proteomic profile of MSCs systemically administered to two patients with severe refractory acute respiratory distress syndrome (ARDS) on a compassionate use basis and attempted to correlate these with in vivo anti-inflammatory actions. Both patients received 2 x 10(6) cells per kilogram, and each subsequently improved with resolution of respiratory, hemodynamic, and multiorgan failure. In parallel, a decrease was seen in multiple pulmonary and systemic markers of inflammation, including epithelial apoptosis, alveolar-capillary fluid leakage, and proinflammatory cytokines, microRNAs, and chemokines. In vitro studies of the MSCs demonstrated a broad anti-inflammatory capacity, including suppression of T-cell responses and induction of regulatory phenotypes in T cells, monocytes, and neutrophils. Some of these in vitro potency assessments correlated with, and were relevant to, the observed in vivo actions. These experiences highlight both the mechanistic information that can be gained from clinical experience and the value of correlating in vitro potency assessments with clinical effects. The findings also suggest, but do not prove, a beneficial effect of lung protective strategies using adoptively transferred MSCs in ARDS. Appropriate randomized clinical trials are required to further assess any potential clinical efficacy and investigate the effects on in vivo inflammation. STEM CELLS TRANSLATIONAL MEDICINE 2015;4:1199-1213
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view