SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Corrà M.) srt2:(2020-2023)"

Search: WFRF:(Corrà M.) > (2020-2023)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Landrigan, Philip J., et al. (author)
  • Human Health and Ocean Pollution
  • 2020
  • In: Annals of Global Health. - : Ubiquity Press. - 2214-9996. ; 86:1
  • Research review (peer-reviewed)abstract
    • Background: Pollution - unwanted waste released to air, water, and land by human activity - is the largest environmental cause of disease in the world today. It is responsible for an estimated nine million premature deaths per year, enormous economic losses, erosion of human capital, and degradation of ecosystems. Ocean pollution is an important, but insufficiently recognized and inadequately controlled component of global pollution. It poses serious threats to human health and well-being. The nature and magnitude of these impacts are only beginning to be understood.Goals: (1) Broadly examine the known and potential impacts of ocean pollution on human health. (2) Inform policy makers, government leaders, international organizations, civil society, and the global public of these threats. (3) Propose priorities for interventions to control and prevent pollution of the seas and safeguard human health.Methods: Topic-focused reviews that examine the effects of ocean pollution on human health, identify gaps in knowledge, project future trends, and offer evidence-based guidance for effective intervention.Environmental Findings: Pollution of the oceans is widespread, worsening, and in most countries poorly controlled. It is a complex mixture of toxic metals, plastics, manufactured chemicals, petroleum, urban and industrial wastes, pesticides, fertilizers, pharmaceutical chemicals, agricultural runoff, and sewage. More than 80% arises from land-based sources. It reaches the oceans through rivers, runoff, atmospheric deposition and direct discharges. It is often heaviest near the coasts and most highly concentrated along the coasts of low- and middle-income countries. Plastic is a rapidly increasing and highly visible component of ocean pollution, and an estimated 10 million metric tons of plastic waste enter the seas each year. Mercury is the metal pollutant of greatest concern in the oceans; it is released from two main sources - coal combustion and small-scale gold mining. Global spread of industrialized agriculture with increasing use of chemical fertilizer leads to extension of Harmful Algal Blooms (HABs) to previously unaffected regions. Chemical pollutants are ubiquitous and contaminate seas and marine organisms from the high Arctic to the abyssal depths.Ecosystem Findings: Ocean pollution has multiple negative impacts on marine ecosystems, and these impacts are exacerbated by global climate change. Petroleum-based pollutants reduce photosynthesis in marine microorganisms that generate oxygen. Increasing absorption of carbon dioxide into the seas causes ocean acidification, which destroys coral reefs, impairs shellfish development, dissolves calcium-containing microorganisms at the base of the marine food web, and increases the toxicity of some pollutants. Plastic pollution threatens marine mammals, fish, and seabirds and accumulates in large mid-ocean gyres. It breaks down into microplastic and nanoplastic particles containing multiple manufactured chemicals that can enter the tissues of marine organisms, including species consumed by humans. Industrial releases, runoff, and sewage increase frequency and severity of HABs, bacterial pollution, and anti-microbial resistance. Pollution and sea surface warming are triggering poleward migration of dangerous pathogens such as the Vibrio species. Industrial discharges, pharmaceutical wastes, pesticides, and sewage contribute to global declines in fish stocks.Human Health Findings: Methylmercury and PCBs are the ocean pollutants whose human health effects are best understood. Exposures of infants in utero to these pollutants through maternal consumption of contaminated seafood can damage developing brains, reduce IQ and increase children's risks for autism, ADHD and learning disorders. Adult exposures to methylmercury increase risks for cardiovascular disease and dementia. Manufactured chemicals - phthalates, bisphenol A, flame retardants, and perfluorinated chemicals, many of them released into the seas from plastic waste - can disrupt endocrine signaling, reduce male fertility, damage the nervous system, and increase risk of cancer. HABs produce potent toxins that accumulate in fish and shellfish. When ingested, these toxins can cause severe neurological impairment and rapid death. HAB toxins can also become airborne and cause respiratory disease. Pathogenic marine bacteria cause gastrointestinal diseases and deep wound infections. With climate change and increasing pollution, risk is high that Vibrio infections, including cholera, will increase in frequency and extend to new areas. All of the health impacts of ocean pollution fall disproportionately on vulnerable populations in the Global South - environmental injustice on a planetary scale.Conclusions: Ocean pollution is a global problem. It arises from multiple sources and crosses national boundaries. It is the consequence of reckless, shortsighted, and unsustainable exploitation of the earth's resources. It endangers marine ecosystems. It impedes the production of atmospheric oxygen. Its threats to human health are great and growing, but still incompletely understood. Its economic costs are only beginning to be counted. Ocean pollution can be prevented. Like all forms of pollution, ocean pollution can be controlled by deploying data-driven strategies based on law, policy, technology, and enforcement that target priority pollution sources. Many countries have used these tools to control air and water pollution and are now applying them to ocean pollution. Successes achieved to date demonstrate that broader control is feasible. Heavily polluted harbors have been cleaned, estuaries rejuvenated, and coral reefs restored. Prevention of ocean pollution creates many benefits. It boosts economies, increases tourism, helps restore fisheries, and improves human health and well-being. It advances the Sustainable Development Goals (SDG). These benefits will last for centuries.Recommendations: World leaders who recognize the gravity of ocean pollution, acknowledge its growing dangers, engage civil society and the global public, and take bold, evidence-based action to stop pollution at source will be critical to preventing ocean pollution and safeguarding human health. Prevention of pollution from land-based sources is key. Eliminating coal combustion and banning all uses of mercury will reduce mercury pollution. Bans on single-use plastic and better management of plastic waste reduce plastic pollution. Bans on persistent organic pollutants (POPs) have reduced pollution by PCBs and DDT. Control of industrial discharges, treatment of sewage, and reduced applications of fertilizers have mitigated coastal pollution and are reducing frequency of HABs. National, regional and international marine pollution control programs that are adequately funded and backed by strong enforcement have been shown to be effective. Robust monitoring is essential to track progress. Further interventions that hold great promise include wide-scale transition to renewable fuels; transition to a circular economy that creates little waste and focuses on equity rather than on endless growth; embracing the principles of green chemistry; and building scientific capacity in all countries. Designation of Marine Protected Areas (MPAs) will safeguard critical ecosystems, protect vulnerable fish stocks, and enhance human health and well-being. Creation of MPAs is an important manifestation of national and international commitment to protecting the health of the seas.
  •  
2.
  •  
3.
  • Nayagam, Jeremy S, et al. (author)
  • Maternal liver-related symptoms during pregnancy in primary sclerosing cholangitis.
  • 2023
  • In: JHEP reports : innovation in hepatology. - 2589-5559. ; 6:1
  • Journal article (peer-reviewed)abstract
    • Although worsening liver-related symptoms during pregnancy can occur in primary sclerosing cholangitis (PSC), there are insufficient data to effectively counsel patients on their pre-conception risk and no clear recommendations on monitoring and management during pregnancy. We aimed to describe maternal liver-related symptoms in pregnancy, both before and after PSC diagnosis, and explore factors associated with worsening symptoms and liver-related outcomes.We conducted a multicentre retrospective observational study of females with PSC and known pregnancy with live birth, via the International PSC Study Group. We included 450 patients from 12 European centres. Data included clinical variables, liver-related symptoms (pruritus and/or cholangitis) during pregnancy, and liver biochemistry. A composite primary endpoint of transplant-free survival from time of PSC diagnosis was used.There were 266 pregnancies in 178 patients following PSC diagnosis. Worsening liver-related symptoms were reported in 66/228 (28.9%) pregnancies; they had a reduced transplant-free survival (p= 0.03), which retained significance on multivariate analysis (hazard ratio 3.02, 95% CI 1.24-7.35; p= 0.02).Abnormal biochemistry and/or liver-related symptoms (pruritus and/or cholangitis) were noted during pregnancy before PSC diagnosis in 21/167 (12.6%) patients. They had a reduced transplant-free survival from pregnancy (p= 0.01), which did not retain significance in a multivariable model (hazard ratio 1.10, 95% CI 0.43-2.85; p= 0.84).Liver-related symptoms are frequently encountered during pregnancies before the diagnosis of PSC, and pregnancy may expose the pre-clinical phase of PSC in some patients. Worsening liver-related symptoms were seen in a third of our cohort with known PSC during pregnancy; and this subgroup had a poorer prognosis, which may be related to more advanced liver disease at time of pregnancy and/or a more severe disease phenotype.Patients with PSC can develop worsening of their liver-related symptoms during pregnancy; however, risk factors for this and the long-term implications are not known. We identified that there is a significant risk of these symptoms in pregnancy, both before and after PSC has been diagnosed, particularly in patients with elevated alkaline phosphatase. Furthermore, our findings suggest that worsening symptoms during pregnancy may be associated with adverse long-term clinical outcomes of liver transplantation and death in patients with known PSC. This may be related to the presence of more advanced liver disease at time of pregnancy. This information can be used to counsel patients with PSC before conception and identify patients who need close follow-up after delivery.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view