SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Cousins I) srt2:(2020-2024)"

Search: WFRF:(Cousins I) > (2020-2024)

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • du Cros, P, et al. (author)
  • Standards for clinical trials for treating TB
  • 2023
  • In: The international journal of tuberculosis and lung disease : the official journal of the International Union against Tuberculosis and Lung Disease. - 1815-7920. ; 27:12, s. 885-898
  • Journal article (peer-reviewed)
  •  
2.
  • Naaf, Tobias, et al. (author)
  • Context matters : the landscape matrix determines the population genetic structure of temperate forest herbs across Europe
  • 2022
  • In: Landscape Ecology. - : Springer Science and Business Media LLC. - 0921-2973 .- 1572-9761. ; 37:5, s. 1365-1384
  • Journal article (peer-reviewed)abstract
    • Context Plant populations in agricultural landscapes are mostly fragmented and their functional connectivity often depends on seed and pollen dispersal by animals. However, little is known about how the interactions of seed and pollen dispersers with the agricultural matrix translate into gene flow among plant populations.Objectives We aimed to identify effects of the landscape structure on the genetic diversity within, and the genetic differentiation among, spatially isolated populations of three temperate forest herbs. We asked, whether different arable crops have different effects, and whether the orientation of linear landscape elements relative to the gene dispersal direction matters.Methods We analysed the species' population genetic structures in seven agricultural landscapes across temperate Europe using microsatellite markers. These were modelled as a function of landscape composition and configuration, which we quantified in buffer zones around, and in rectangular landscape strips between, plant populations.Results Landscape effects were diverse and often contrasting between species, reflecting their association with different pollen- or seed dispersal vectors. Differentiating crop types rather than lumping them together yielded higher proportions of explained variation. Some linear landscape elements had both a channelling and hampering effect on gene flow, depending on their orientation.Conclusions Landscape structure is a more important determinant of the species' population genetic structure than habitat loss and fragmentation per se. Landscape planning with the aim to enhance the functional connectivity among spatially isolated plant populations should consider that even species of the same ecological guild might show distinct responses to the landscape structure.
  •  
3.
  • Naaf, Tobias, et al. (author)
  • Sensitivity to habitat fragmentation across European landscapes in three temperate forest herbs
  • 2021
  • In: Landscape Ecology. - : Springer Science and Business Media LLC. - 0921-2973 .- 1572-9761. ; 36:10, s. 2831-2848
  • Journal article (peer-reviewed)abstract
    • Context Evidence for effects of habitat loss and fragmentation on the viability of temperate forest herb populations in agricultural landscapes is so far based on population genetic studies of single species in single landscapes. However, forest herbs differ in their life histories, and landscapes have different environments, structures and histories, making generalizations difficult.Objectives We compare the response of three slow-colonizing forest herbs to habitat loss and fragmentation and set this in relation to differences in life-history traits, in particular their mating system and associated pollinators.Methods We analysed the herbs' landscape-scale population genetic structure based on microsatellite markers from replicate forest fragments across seven European agricultural landscapes.Results All species responded to reductions in population size with a decrease in allelic richness and an increase in genetic differentiation among populations. Genetic differentiation also increased with enhanced spatial isolation. In addition, each species showed unique responses. Heterozygosity in the self-compatible Oxalis acetosella was reduced in smaller populations. The genetic diversity of Anemone nemorosa, whose main pollinators are less mobile, decreased with increasing spatial isolation, but not that of the bumblebee-pollinated Polygonatum multiflorum.Conclusions Our study indicates that habitat loss and fragmentation compromise the long-term viability of slow-colonizing forest herbs despite their ability to persist for many decades by clonal propagation. The distinct responses of the three species studied within the same landscapes confirm the need of multi-species approaches. The mobility of associated pollinators should be considered an important determinant of forest herbs' sensitivity to habitat loss and fragmentation.
  •  
4.
  •  
5.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view