SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Couto Rafael Carvalho) srt2:(2023)"

Search: WFRF:(Couto Rafael Carvalho) > (2023)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Chakraborty, Pratip, et al. (author)
  • Deciphering Methylation Effects on S2(ππ*) Internal Conversion in the Simplest Linear α,β-Unsaturated Carbonyl
  • 2023
  • In: Journal of Physical Chemistry A. - : American Chemical Society (ACS). - 1089-5639 .- 1520-5215. ; 127:25, s. 5360-5373
  • Journal article (peer-reviewed)abstract
    • Chemical substituents can influence photodynamics by altering the location of critical points and the topography of the potential energy surfaces (electronic effect) and by selectively modifying the inertia of specific nuclear modes (inertial effects). Using nonadiabatic dynamics simulations, we investigate the impact of methylation on S2(ππ*) internal conversion in acrolein, the simplest linear α,β-unsaturated carbonyl. Consistent with time constants reported in a previous time-resolved photoelectron spectroscopy study, S2 → S1 deactivation occurs on an ultrafast time scale (∼50 fs). However, our simulations do not corroborate the sequential decay model used to fit the experiment. Instead, upon reaching the S1 state, the wavepacket bifurcates: a portion undergoes ballistic S1 → S0 deactivation (∼90 fs) mediated by fast bond-length alternation motion, while the remaining decays on the picosecond time scale. Our analysis reveals that methyl substitution, generally assumed to mainly exert inertial influence, is also manifested in important electronic effects due to its weak electron-donating ability. While methylation at the β C atom gives rise to effects principally of an inertial nature, such as retarding the twisting motion of the terminal −CHCH3 group and increasing its coupling with pyramidalization, methylation at the α or carbonyl C atom modifies the potential energy surfaces in a way that also contributes to altering the late S1-decay behavior. Specifically, our results suggest that the observed slowing of the picosecond component upon α-methylation is a consequence of a tighter surface and reduced amplitude along the central pyramidalization, effectively restricting the access to the S1/S0-intersection seam. Our work offers new insight into the S2(ππ*) internal conversion mechanisms in acrolein and its methylated derivatives and highlights site-selective methylation as a tuning knob to manipulate photochemical reactions.
  •  
2.
  • Ideböhn, Veronica, 1992, et al. (author)
  • Symmetry breaking in core-valence double ionisation of allene
  • 2023
  • In: Communications Chemistry. - : Springer Nature. - 2399-3669. ; 6:1
  • Journal article (peer-reviewed)abstract
    • Allene serves as a model to study multiple ionization of organic molecules. Here, the authors use synchrotron radiation-based multi-particle coincidence techniques and high-level ab initio calculations to propose a simple physical model to elucidate the symmetry breaking in core-valence double ionization of allene. Conventional electron spectroscopy is an established one-electron-at-the-time method for revealing the electronic structure and dynamics of either valence or inner shell ionized systems. By combining an electron-electron coincidence technique with the use of soft X-radiation we have measured a double ionisation spectrum of the allene molecule in which one electron is removed from a C1s core orbital and one from a valence orbital, well beyond Siegbahns Electron-Spectroscopy-for-Chemical-Analysis method. This core-valence double ionisation spectrum shows the effect of symmetry breaking in an extraordinary way, when the core electron is ejected from one of the two outer carbon atoms. To explain the spectrum we present a new theoretical approach combining the benefits of a full self-consistent field approach with those of perturbation methods and multi-configurational techniques, thus establishing a powerful tool to reveal molecular orbital symmetry breaking on such an organic molecule, going beyond Lowdins standard definition of electron correlation.
  •  
3.
  • Manni, Giovanni Li, et al. (author)
  • The OpenMolcas Web : A Community-Driven Approach to Advancing Computational Chemistry
  • 2023
  • In: Journal of Chemical Theory and Computation. - : American Chemical Society (ACS). - 1549-9618 .- 1549-9626. ; 19:20, s. 6933-6991
  • Journal article (peer-reviewed)abstract
    • The developments of the open-source OpenMolcas chemistry software environment since spring 2020 are described, with a focus on novel functionalities accessible in the stable branch of the package or via interfaces with other packages. These developments span a wide range of topics in computational chemistry and are presented in thematic sections: electronic structure theory, electronic spectroscopy simulations, analytic gradients and molecular structure optimizations, ab initio molecular dynamics, and other new features. This report offers an overview of the chemical phenomena and processes OpenMolcas can address, while showing that OpenMolcas is an attractive platform for state-of-the-art atomistic computer simulations.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view