SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Cramer C.) srt2:(2000-2004)"

Search: WFRF:(Cramer C.) > (2000-2004)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  • Bergmann, U, et al. (author)
  • High-resolution X-ray spectroscopy of rare events : a different look at local structure and chemistry
  • 2001
  • In: Journal of Synchrotron Radiation. - Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA. CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. : MUNKSGAARD INT PUBL LTD. - 0909-0495 .- 1600-5775. ; 8, s. 199-203
  • Journal article (peer-reviewed)abstract
    • The combination of large-acceptance high-resolution X-ray optics with bright synchrotron sources permits quantitative analysis of rare events such as X-ray fluorescence from very dilute systems, weak fluorescence transitions or X-ray Raman scattering. Transition-metal K beta fluorescence contains information about spin and oxidation state; examples of the characterization of the Mn oxidation states in the oxygen-evolving complex of photosystem II and Mn-consuming spores from the marine bacillus SG-1 are presented. Weaker features of the K beta spectrum resulting from valence-level and 'interatomic' ligand to metal transitions contain detailed information on the ligand-atom type, distance and orientation. Applications of this spectral region to characterize the local structure of model compounds are presented. X-ray Raman scattering (XRS) is an extremely rare event, but also represents a unique technique to obtain bulk-sensitive low-energy (<600 eV) X-ray absorption fine structure (XAFS) spectra using hard ( 10 keV) X-rays. A photon is inelastically scattered, losing part of its energy to promote an electron into an unoccupied level. In many cases, the cross section is proportional to that of the corresponding absorption process yielding the same X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) features. XRS finds application for systems that defy XAFS analysis at low energies, e.g. liquids or highly concentrated complex systems, reactive compounds and samples under extreme conditions (pressure, temperature). Recent results are discussed.
  •  
4.
  • Lucht, W, et al. (author)
  • Climatic control of the high-latitude vegetation greening trend and Pinatubo effect
  • 2002
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 1095-9203 .- 0036-8075. ; 296:5573, s. 1687-1689
  • Journal article (peer-reviewed)abstract
    • A biogeochemical model of vegetation using observed climate data predicts the high northern latitude greening trend over the past two decades observed by satellites and a marked setback in this trend after the Mount Pinatubo, volcano eruption in 1991. The observed trend toward earlier spring budburst and increased maximum leaf area is produced by the model as a consequence of biogeochemical vegetation responses mainly to changes in temperature. The post-Pinatubo decline in vegetation in 1992-1993 is apparent as the effect of temporary cooling caused by the eruption. High-latitude CO2 uptake during these years is predicted as a consequence of the differential response of heterotrophic respiration and net primary production.
  •  
5.
  • Messinger, Johannes, 1963-, et al. (author)
  • Absence of Mn-centered oxidation in the S2 → S3 Transition: : Implications for the mechanism of photosynthetic water oxidation
  • 2001
  • In: Journal of the American Chemical Society. - : AMER CHEMICAL SOC. - 0002-7863 .- 1520-5126. ; 123:32, s. 7804-7820
  • Journal article (peer-reviewed)abstract
    • A key question for the understanding of photosynthetic water oxidation is whether the four oxidizing equivalents necessary to oxidize water to dioxygen are accumulated on the four Mn ions of the oxygen-evolving complex (OEC), or whether some ligand-centered oxidations take place before the formation and release of dioxygen during the S-3 --> [S-4] --> So transition. Progress in instrumentation and flash sample preparation allowed us to apply Mn K beta X-ray emission spectroscopy (K beta XES) to this problem for the first time. The K beta XES results, in combination with Mn X-ray absorption near-edge structure (XANES) and electron paramagnetic resonance (EPR) data obtained from the same set of samples, show that the S-2 --> S3 transition, in contrast to the S-0 --> S-1 and S-1 --> S-2 transitions. does not involve a Mn-centered oxidation. On the basis of new structural data from the S-3-state, manganese mu -oxo bridge radical formation is proposed for the S-2 --> S-3 transition, and three possible mechanisms for the O-O bond formation are presented.
  •  
6.
  • Ni, J, et al. (author)
  • Modelling the vegetation of China using the process-based equilibrium terrestrial biosphere model BIOME3
  • 2000
  • In: Global Ecology and Biogeography Letters. - : Wiley. - 0960-7447 .- 1466-822X. ; 9:6, s. 463-480
  • Journal article (peer-reviewed)abstract
    • 1 We model the potential vegetation and annual net primary production (NPP) of China on a 10' grid under the present climate using the processed-based equilibrium terrestrial biosphere model BIOME3. The simulated distribution of the vegetation was in general in good agreement with the potential natural vegetation based on a numerical comparison between the two maps using the DeltaV statistic (DeltaV = 0.23). Predicted and measured NPP were also similar, especially in terms of biome-averages. 2 A coupled ocean-atmosphere general circulation model including sulphate aerosols was used to drive a double greenhouse gas scenario for 2070-2099. Simulated vegetation maps from two different CO2 scenarios (340 and 500 p.p.m.v.) were compared to the baseline biome map using DeltaV. Climate change alone produced a large reduction in desert, alpine tundra and ice/polar desert, and a general pole-ward shift of the boreal, temperate deciduous, warm-temperate evergreen and tropical forest belts, a decline in boreal deciduous forest and the appearance of tropical deciduous forest. The inclusion of CO2 physiological effects led to a marked decrease in moist savannas and desert, a general decrease for grasslands and steppe, and disappearance of xeric woodland/scrub. Temperate deciduous broadleaved forest, however, shifted north to occupy nearly half the area of previously temperate mixed forest. 3 The impact of climate change and increasing CO2 is not only on biogeography, but also on potential NPP. The NPP values for most of the biomes in the scenarios with CO2 set at 340 p.p.m.v. and 500 p.p.m.v. are greater than those under the current climate, except for the temperate deciduous forest, temperate evergreen broadleaved forest, tropical rain forest, tropical seasonal forest, and xeric woodland/scrub biomes. Total vegetation and total carbon is simulated to increase significantly in the future climate scenario, both with and without the CO2 direct physiological effect. 4 Our results show that the global process-based equilibrium terrestrial biosphere model BIOME3 can be used successfully at a regional scale.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view