SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Crary F.) srt2:(2007-2009)"

Search: WFRF:(Crary F.) > (2007-2009)

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Coustenis, A., et al. (author)
  • TandEM : Titan and Enceladus mission
  • 2009
  • In: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 23:3, s. 893-946
  • Journal article (peer-reviewed)abstract
    • TandEM was proposed as an L-class (large) mission in response to ESA's Cosmic Vision 2015-2025 Call, and accepted for further studies, with the goal of exploring Titan and Enceladus. The mission concept is to perform in situ investigations of two worlds tied together by location and properties, whose remarkable natures have been partly revealed by the ongoing Cassini-Huygens mission. These bodies still hold mysteries requiring a complete exploration using a variety of vehicles and instruments. TandEM is an ambitious mission because its targets are two of the most exciting and challenging bodies in the Solar System. It is designed to build on but exceed the scientific and technological accomplishments of the Cassini-Huygens mission, exploring Titan and Enceladus in ways that are not currently possible (full close-up and in situ coverage over long periods of time). In the current mission architecture, TandEM proposes to deliver two medium-sized spacecraft to the Saturnian system. One spacecraft would be an orbiter with a large host of instruments which would perform several Enceladus flybys and deliver penetrators to its surface before going into a dedicated orbit around Titan alone, while the other spacecraft would carry the Titan in situ investigation components, i.e. a hot-air balloon (MontgolfiSre) and possibly several landing probes to be delivered through the atmosphere.
  •  
2.
  • Jones, G. H., et al. (author)
  • The dust halo of Saturn's largest icy moon, Rhea
  • 2008
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 319:5868, s. 1380-1384
  • Journal article (peer-reviewed)abstract
    • Saturn's moon Rhea had been considered massive enough to retain a thin, externally generated atmosphere capable of locally affecting Saturn's magnetosphere. The Cassini spacecraft's in situ observations reveal that energetic electrons are depleted in the moon's vicinity. The absence of a substantial exosphere implies that Rhea's magnetospheric interaction region, rather than being exclusively induced by sputtered gas and its products, likely contains solid material that can absorb magnetospheric particles. Combined observations from several instruments suggest that this material is in the form of grains and boulders up to several decimetres in size and orbits Rhea as an equatorial debris disk. Within this disk may reside denser, discrete rings or arcs of material.
  •  
3.
  • Ma, Y. J., et al. (author)
  • Time-dependent global MHD simulations of Cassini T32 flyby : From magnetosphere to magnetosheath
  • 2009
  • In: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 114:3, s. A03204-
  • Journal article (peer-reviewed)abstract
    • When the Cassini spacecraft flew by Titan on 13 June 2007, at 13.6 Saturn local time, Titan was directly observed to be outside Saturn's magnetopause. Cassini observations showed dramatic changes of magnetic field orientation as well as other plasma flow parameters during the inbound and outbound segments. In this paper, we study Titan's ionospheric responses to such a sudden change in the upstream plasma conditions using a sophisticated multispecies global MHD model. Simulation results of three different cases (steady state, simple current sheet crossing, and magnetopause crossing) are presented and compared against Cassini Magnetometer, Langmuir Probe, and Cassini Plasma Spectrometer observations. The simulation results provide clear evidence for the existence of a fossil field that was induced in the ionosphere. The main interaction features, as observed by the Cassini spacecraft, are well reproduced by the time-dependent simulation cases. Simulation also reveals how the fossil field was trapped during the interaction and shows the coexistence of two pileup regions with opposite magnetic orientation, as well as the formation of a pair of new Alfven wings and tail disconnection during the magnetopause crossing process.
  •  
4.
  • Ma, Ying-Juan, et al. (author)
  • 3D global multi-species Hall-MHD simulation of the Cassini T9 flyby
  • 2007
  • In: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 34:24, s. L24S10-
  • Journal article (peer-reviewed)abstract
    • The wake region of Titan is an important component of Titan's interaction with its surrounding plasma and therefore a thorough understanding of its formation and structure is of primary interest. The Cassini spacecraft passed through the distant downstream region of Titan on 18: 59: 30 UT Dec. 26, 2005, which is referred to as the T9 flyby and provided a great opportunity to test our understanding of the highly dynamic wake region. In this paper we compare the observational data (from the magnetometer, plasma analyzer and Langmuir probe) with numerical results using a 7-species Hall MHD Titan model. There is a good agreement between the observed and modeled parameters, given the uncertainties in plasma measurements and the approximations inherent in the Hall MHD model. Our simulation results also show that Hall MHD model results fit the observations better than the non-Hall MHD model for the flyby, consistent with the importance of kinetic effects in the Titan interaction. Based on the model results, we also identify various regions near Titan where Hall MHD models are applicable.
  •  
5.
  • Wahlund, Jan Erik, et al. (author)
  • On the amount of heavy molecular ions in Titan's ionosphere
  • 2009
  • In: Planetary and Space Science. - : Elsevier BV. - 0032-0633 .- 1873-5088. ; 57:14-15, s. 1857-1865
  • Journal article (peer-reviewed)abstract
    • We present observational evidence that the ionosphere of Titan below an altitude of 1150 km is a significant source of heavy (> 100 amu) molecular organic species. This study is based on measurements by five instruments (RPWS/LP, RPWS/E, INMS, CAPS/ELS, CAPS/IBS) onboard the Cassini spacecraft during three flybys (T17, T18, T32) of Titan. The ionospheric peaks encountered at altitudes of 950-1300 km had densities in the range 900-3000 cm(-3). Below these peaks the number densities of heavy positively charged ions reached 100-2000 cm(-3) and approached 50-70% of the total ionospheric density with an increasing trend toward lowest measured altitudes. Simultaneously measured negatively charged ion densities were in the range 50-150 cm(-3). These results imply that similar to 10(5)similar to 10(6) heavy positively charged ions/m(3)/s are continuously recombining into heavy neutrals and supply the atmosphere of Titan. The ionosphere may in this way produce 0.1-1 Mt/yr of heavy organic compounds and is therefore a sizable source for aerosol formation. We also predict that Titan's ionosphere is dominated by heavy (> 100 amu) molecular ions below 950 km.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view