SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Crossman Alan R.) srt2:(2010-2014)"

Search: WFRF:(Crossman Alan R.) > (2010-2014)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Bourdenx, Mathieu, et al. (author)
  • Abnormal structure-specific peptide transmission and processing in a primate model of Parkinson's disease and L-DOPA-induced dyskinesia
  • 2014
  • In: Neurobiology of Disease. - : Elsevier BV. - 0969-9961 .- 1095-953X. ; 62, s. 307-312
  • Journal article (peer-reviewed)abstract
    • A role for enhanced peptidergic transmission, either opioidergic or not, has been proposed for the generation of L-3,4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesia (LID) on the basis of in situ hybridization studies showing that striatal peptidergic precursor expression consistently correlates with LID severity. Few studies, however, have focused on the actual peptides derived from these precursors. We used mass-spectrometry to study peptide profiles in the putamen and globus pallidus (internalis and externalis) collected from 1-methyl-4-phenyl-1,2,4,6-tetrahydropyridine treated macaque monkeys, acutely or chronically treated with L-DOPA. We identified that parkinsonian and dyskinetic states are associated with an abnormal production of proenkephalin-, prodynorphin- and protachykinin-1-derived peptides in both segments of the globus pallidus. Moreover, we report that peptidergic processing is dopamine-state dependent and highly structure-specific, possibly explaining the failure of previous clinical trials attempting to rectify abnormal peptidergic transmission.
  •  
2.
  • Kobylecki, Christopher, et al. (author)
  • Calcium-permeable AMPA receptors are involved in the induction and expression of l-DOPA-induced dyskinesia in Parkinson's disease
  • 2010
  • In: Journal of Neurochemistry. - : Wiley. - 1471-4159 .- 0022-3042. ; 114:2, s. 499-511
  • Journal article (peer-reviewed)abstract
    • P>Overactivity of striatal alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptors is implicated in the pathophysiology of l-DOPA-induced dyskinesia (LID) in Parkinson's disease (PD). In this study, we evaluated the behavioural and molecular effects of acute and chronic blockade of Ca2+-permeable AMPA receptors in animal models of PD and LID. The acute effects of the Ca2+-permeable AMPA receptor antagonist 1-trimethylammonio-5-(1-adamantane-methylammoniopentane) dibromide hydrobromide (IEM 1460) on abnormal involuntary movements (AIMs) in the 6-hydroxydopamine (6-OHDA)-lesioned rat and LID in the MPTP-lesioned non-human primate were assessed. Subsequently, the effects of chronic treatment of 6-OHDA-lesioned rats with vehicle, l-DOPA/benserazide (6/15 mg/kg, i.p.) + vehicle or l-DOPA + IEM 1460 (3 mg/kg, i.p.) on behavioural and molecular correlates of priming for LID were evaluated. In the 6-OHDA-lesioned rat and MPTP-lesioned non-human primate, acute treatment with IEM 1460 (1-3 mg/kg) dose-dependently reduced LID without adverse effects on motor performance. Chronic co-treatment for 21 days with IEM 1460 reduced the induction of AIMs by l-DOPA in the 6-OHDA-lesioned rat without affecting peak rotarod performance, and attenuated AIMs score by 75% following l-DOPA challenge (p < 0.05). Chronic IEM 1460 treatment reversed l-DOPA-induced up-regulation of pre-proenkephalin-A, and normalised pre-proenkephalin-B mRNA expression in the lateral striatum, indicating an inhibition of both behavioural and molecular correlates of priming. These data suggest that Ca2+-permeable AMPA receptors are critically involved in both the induction and subsequent expression of LID, and represent a potential target for anti-dyskinetic therapies.
  •  
3.
  • Shariatgorji, Mohammadreza, et al. (author)
  • Direct targeted quantitative molecular imaging of neurotransmitters in brain tissue sections
  • 2014
  • In: Neuron. - : Elsevier BV. - 0896-6273 .- 1097-4199. ; 84:4, s. 697-707
  • Journal article (peer-reviewed)abstract
    • Current neuroimaging techniques have very limited abilities to directly identify and quantify neurotransmitters from brain sections. We have developed a molecular-specific approach for the simultaneous imaging and quantitation of multiple neurotransmitters, precursors, and metabolites, such as tyrosine, tryptamine, tyramine, phenethylamine, dopamine, 3-methoxytyramine, serotonin, GABA, glutamate, acetylcholine, and L-alpha-glycerylphosphorylcholine, in histological tissue sections at high spatial resolutions. The method is employed to directly measure changes in the absolute and relative levels ofneurotransmitters in specific brain structures in animal disease models and in response to drug treatments, demonstrating the power of mass spectrometry imaging in neuroscience.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view