SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dahlquist Erik Professor) srt2:(2015-2019)"

Sökning: WFRF:(Dahlquist Erik Professor) > (2015-2019)

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hosain, Md Lokman, 1984- (författare)
  • Fluid Flow and Heat Transfer Simulations for Complex Industrial Applications : From Reynolds Averaged Navier-Stokes towards Smoothed Particle Hydrodynamics
  • 2018
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Optimal process control can significantly enhance energy efficiency of heating and cooling processes in many industries. Process control systems typically rely on measurements and so called grey or black box models that are based mainly on empirical correlations, in which the transient characteristics and their influence on the control parameters are often ignored. A robust and reliable numerical technique, to solve fluid flow and heat transfer problems, such as computational fluid dynamics (CFD), which is capable of providing a detailed understanding of the multiple underlying physical phenomena, is a necessity for optimization, decision support and diagnostics of complex industrial systems. The thesis focuses on performing high-fidelity CFD simulations of a wide range of industrial applications to highlight and understand the complex nonlinear coupling between the fluid flow and heat transfer. The industrial applications studied in this thesis include cooling and heating processes in a hot rolling steel plant, electric motors, heat exchangers and sloshing inside a ship carrying liquefied natural gas. The goal is to identify the difficulties and challenges to be met when simulating these applications using different CFD tools and methods and to discuss the strengths and limitations of the different tools.The mesh-based finite volume CFD solver ANSYS Fluent is employed to acquire detailed and accurate solutions of each application and to highlight challenges and limitations. The limitations of conventional mesh-based CFD tools are exposed when attempting to resolve the multiple space and time scales involved in large industrial processes. Therefore, a mesh-free particle method, smoothed particle hydrodynamics (SPH) is identified in this thesis as an alternative to overcome some of the observed limitations of the mesh-based solvers. SPH is introduced to simulate some of the selected cases to understand the challenges and highlight the limitations. The thesis also contributes to the development of SPH by implementing the energy equation into an open-source SPH flow solver to solve thermal problems. The thesis highlights the current state of different CFD approaches towards complex industrial applications and discusses the future development possibilities.The overall observations, based on the industrial problems addressed in this thesis, can serve as decision tool for industries to select an appropriate numerical method or tool for solving problems within the presented context. The analysis and discussions also serve as a basis for further development and research to shed light on the use of CFD simulations for improved process control, optimization and diagnostics.
  •  
2.
  • Hosain, Md Lokman, 1984- (författare)
  • TOWARDS ACCELERATED SIMULATIONS FOR FLUID FLOW AND HEAT TRANSFER OF LARGE INDUSTRIAL PROCESSES
  • 2016
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The manufacturing sector is one of the biggest energy consumers. The iron and steel markets in China are growing very fast. Several studies have been performed to evaluate the Chinese steel sector in terms of energy savings and CO2 emissions. The results of the studies showed that the major energy savings expected within 2020 and 2030 timeframe will be from industrial furnaces in steel mills. For the Swedish steel industry, it is important to be very efficient in order to remain competitive. The hot rolling process in the steel industry is a long process, where big slabs are heated in a furnace above the recrystallization temperature to roll the metal into a thin sheet and then the sheet is cooled at the Runout table using water. The amount of energy used during the process directly influences the price of the products. Moreover, the government policy on energy usage and CO2 emissions, the competitive market and the water scarcity, demand an optimal process operation to reduce energy consumption and greenhouse gas emission. Computer simulation is the best and most convenient way to approximate real-world processes; therefore, there is a need to have a real-time online simulation tool for process optimisation, decision support and diagnostics in different industries.Computational fluid dynamics (CFD) is a robust tool for simulating almost any kind of real-world process related to fluid flow, heat transfer and combustion. However, simulating real-world processes in real-time using CFD is very challenging due to the complexity involved in the physical phenomena studied. In this thesis, CFD simulations have been performed in small scale to understand the physics and perceive the complexity involved in the heating process of steel slabs and the cooling process of the steel sheets at hot rolling steel industries. The results from the simulations are successfully validated using experimental and theoretical results published in open literature. Past experience suggests using mesh-based commercial CFD solvers for simulating industrial processes, only if accurate and detail results are desired. However, the computational performance of these solvers shows limitations from a real-time perspective and indicates the need for alternative CFD methods and solvers. In the literature review performed as part of the first stage of this work, we have identified different alternative methods which can be used to perform CFD simulations in real-time or near real-time for large industrial processes. The thesis discusses the limitations of different types of CFD methods and points out the difficulties and challenges in utilising these methods for simulating large industrial processes. Our preliminary simulation work brings light towards the goal of multi-phase multi-physics real-time simulations.
  •  
3.
  • Avelin, Anders, 1966- (författare)
  • Process Modeling of Combustion and Digesters for On-line Applications
  • 2015
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The use of biomass has increased in recent years due to the efforts to reduce the high emissions of greenhouse gases, primarily carbon dioxide from combustion of fossil fuels. At the same time industrial processes have become more complex because of increased production rates and profitability requirements. A higher degree of automation is needed when the processes are too complex to be handled manually. There is a need to find modeling strategies that can automatically handle the challenges that the conversion of biomass in an industrial process entails, such as operational changes, decreasing component and overall system efficiency, drifting sensors, etc. The objective of this thesis is to develop a methodology for on-line applications in industrial processes. Dynamic process models have been developed for continuous digesters and boilers. Process models have been evaluated for their use in continuous industrial process. Applications that have been studied are monitoring and diagnostics, advanced control and decision support. The process models are designed for on-line simulations. The results shows that the use of mathematical simulation models can improve the use of both process data and process understanding, to achieve improved diagnostics, advanced control and process optimization. In the two examples of industrial processes covered in this thesis, we can see that similar types of models can be used for completely different types of processes, such as pulp digesters and boilers. It also demonstrates the ability to combine soft sensors and hard sensors with physical models to take the information to a higher level of utilization.
  •  
4.
  • Ghaviha, Nima, 1987- (författare)
  • Energy Optimal Operation of Electric Trains : Development of a Driver Advisory System
  • 2016
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The electric traction system used in trains is the most energy efficient traction system in the transportation sector. Moreover, it has the least NOx and CO2 emissions in comparison to other transportation systems (e.g. busses, passenger cars, airplanes, etc.). On the other hand, they are extremely expensive, mainly due to high installation and maintenance cost of the catenary system, including e.g. overhead lines and substations. Consequently, the share of electrified lines is only slightly higher than non-electrified lines. For instance in Europe, 60% of the railway networks are electrified, and the percentage is much lower in other continents. Battery driven trains are a new generation of electric trains that can overcome such high costs while keeping CO2 emissions and energy consumption low.At the moment, there are only two battery driven electric trains developed and both of the trains are passenger electric multiple units (EMUs). An EMU is an electric train with a traction system in more than one wagon, in contrast to loco-haul electric trains which have a traction system in one wagon only. Energy management during the operation of battery driven trains is a crucial task, as energy optimal operation of trains considering the optimal use of batteries can increase both the operating time and the lifetime of batteries. Energy efficient train operation is realized using driver advisory systems (DAS) that instructs drivers on how to drive trains for minimum energy consumption. The aim of this research is to propose an algorithm for speed profile optimization of both EMUs and battery driven EMUs. The desired algorithm should be suitable as a core component for an online DAS with short response time.Several approaches are proposed in the literature for speed profile optimization of electric trains, and a few of these have been proposed for speed profile optimization of battery driven electric trains. The trains modeled in almost all of the approaches are trains using a notch system for controlling tractive effort. The proposed solution in this research project is to use discrete dynamic programming (DP) to find the optimum speed profile. The application of DP is studied for speed profile optimization of EMUs with a notch system as well as EMUs with a smooth gliding handle for controlling tractive effort. The problem is solved for both normal EMUs and battery driven EMUs.The results of this research show that DP can provide accurate results in a reasonably short time. Moreover, the proposed algorithm can be used as a base for a DAS with fast response time (real-time).
  •  
5.
  • Lundström, Lukas, 1980- (författare)
  • Heat demand profiles of buildings' energy conservation measures and their impact on renewable and resource efficient district heating systems
  • 2016
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Increased energy performance of the building stock of European Union is seen as an important measure towards mitigating climate change, increasing resource utilisation efficiency and energy supply security. Whether to improve the supply-side, the demand-side or both is an open issue. This conflict is even more apparent in countries such as Sweden with a high penetration of district heating (DH). Many Swedish DH systems have high share of secondary energy resources such as forest industry residuals, waste material incineration and waste heat; and resource efficient cogeneration of electricity in combined heat and power (CHP) plants. When implementing an energy conservation measure (ECM) in a DH connected building stock, it will affect the operation of the whole DH system. If there are CHP plants and the cogeneration of electricity decreases due to an ECM, and this electricity is valued higher than the fuel savings, the consequences of the ECM would be negative. These complex relationships are investigated by conducting a case study on the Eskilstuna DH system, a renewable energy supply system with relatively high share of cogenerated electricity. Heat demand profiles of ECMs are determined by building energy simulation, using recently deep energy retrofitted multifamily buildings of the “Million Programme”-era in Eskilstuna as model basis. How implementing ECMs impact on the DH system’s heat and electricity production under different electricity revenue scenarios has been computed and evaluated in terms of resource efficiency and CO2 emissions. The results show that different ECMs in the buildings impact differently on the DH system. Measures such as improved insulation level of the building’s envelope, that decrease the heat demand’s dependence to outdoor temperature, increase the amount of cogenerated electricity. While measures such as thermal solar panels, which save heat during summer, affects the absolute amount of cogenerated electricity negatively. Revenues from cogenerated electricity influence the amount of cost-effectively produced electricity much more than the impact from ECMs. Environmental benefits of the ECMs, measured in CO2 emissions and primary energy consumption, are quite small in DH systems that have high share of forest residual fuels and electricity cogeneration. The consequences can even be negative if ECMs lead to increased need of imported electricity that is produced resource inefficiently or/and by fossil fuels. However, all studied ECMs increase the relative amount of cogenerated electricity, the ratio between amount of cogenerated electricity and the heat load. This implied that all ECMs increase the overall efficiency of the Eskilstuna DH system.
  •  
6.
  • Win, Kaung Myat (författare)
  • Emissions from realistic operation of residential wood pellets heating systems
  • 2015
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Emissions from residential combustion appliances vary significantly depending on the firing behaviours and combustion conditions, in addition to combustion technologies and fuel quality. Although wood pellet combustion in residential heating boilers is efficient, the combustion conditions during start-up and stop phases are not optimal and produce significantly high emissions such as carbon monoxide and hydrocarbon from incomplete combustion. The emissions from the start-up and stop phases of the pellet boilers are not fully taken into account in test methods for ecolabels which primarily focus on emissions during operation on full load and part load. The objective of the thesis is to investigate the emission characteristics during realistic operation of residential wood pellet boilers in order to identify when the major part of the annual emissions occur. Emissions from four residential wood pellet boilers were measured and characterized for three operating phases (start-up, steady and stop). Emissions from realistic operation of combined solar and wood pellet heating systems was continuously measured to investigate the influence of start-up and stop phases on total annual emissions. Measured emission data from the pellet devices were used to build an emission model to predict the annual emission factors from the dynamic operation of the heating system using the simulation software TRNSYS. Start-up emissions are found to vary with ignition type, supply of air and fuel, and time to complete the phase. Stop emissions are influenced by fan operation characteristics and the cleaning routine. Start-up and stop phases under realistic operation conditions contribute 80 – 95% of annual carbon monoxide (CO) emission, 60 – 90% total hydrocarbon (TOC), 10 – 20% of nitrogen oxides (NO), and 30 – 40% particles emissions. Annual emission factors from realistic operation of tested residential heating system with a top fed wood pelt boiler can be between 190 and 400 mg/MJ for the CO emissions, between 60 and 95 mg/MJ for the NO, between 6 and 25 mg/MJ for the TOC, between 30 and 116 mg/MJ for the particulate matter and between 2x1013 and 4x1013 /MJ for the number of particles. If the boiler has the cleaning sequence with compressed air such as in boiler B2, annual CO emission factor can be up to 550 mg/MJ. Average CO, TOC and particles emissions under realistic annual condition were greater than the limits values of two eco labels. These results highlight the importance of start-up and stop phases in annual emission factors (especially CO and TOC). Since a large or dominating part of the annual emissions in real operation arise from the start-up and stop sequences, test methods required by the ecolabels should take these emissions into account. In this way it will encourage the boiler manufacturers to minimize annual emissions. The annual emissions of residential pellet heating system can be reduced by optimizing the number of start-ups of the pellet boiler. It is possible to reduce up to 85% of the number of start-ups by optimizing the system design and its controller such as switching of the boiler pump after it stops, using two temperature sensors for boiler ON/OFF control, optimizing of the positions of the connections to the storage tank, increasing the mixing valve temperature in the boiler circuit and decreasing the pump flow rate. For 85 % reduction of start-ups, 75 % of CO and TOC emission factors were reduced while 13% increase in NO and 15 % increase in particle emissions was observed.
  •  
7.
  • Ahlgren, Fredrik, 1980- (författare)
  • Reducing ships' fuel consumption and emissions by learning from data
  • 2018
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In the context of reducing both greenhouse gases and hazardous emissions, the shipping sector faces a major challenge as it is currently responsible for 11% of the transport sector’s anthropogenic greenhouse gas emissions. Even as emissions reductions are needed, the demand for the transport sector rises exponentially every year. This thesis aims to investigate the potential to use ships’ existing internal energy systems more efficiently. The thesis focusses on making existing ships in real operating conditions more efficient based logged machinery data. This dissertation presents results that can make ship more energy efficient by utilising waste heat recovery and machine learning tools. A significant part of this thesis is based on data from a cruise ship in the Baltic Sea, and an extensive analysis of the ship’s internal energy system was made from over a year’s worth of data. The analysis included an exergy analysis, which also considers the usability of each energy flow. In three studies, the feasibility of using the waste heat from the engines was investigated, and the results indicate that significant measures can be undertaken with organic Rankine cycle devices. The organic Rankine cycle was simulated with data from the ship operations and optimised for off-design conditions, both regarding system design and organic fluid selection. The analysis demonstrates that there are considerable differences between the real operation of a ship and what it was initially designed for. In addition, a large two-stroke marine diesel was integrated into a simulation with an organic Rankine cycle, resulting in an energy efficiency improvement of 5%. This thesis also presents new methods of employing machine learning to predict energy consumption. Machine learning algorithms are readily available and free to use, and by using only a small subset of data points from the engines and existing fuel flow meters, the fuel consumption could be predicted with good accuracy. These results demonstrate a potential to improve operational efficiency without installing additional fuel meters. The thesis presents results concerning how data from ships can be used to further analyse and improve their efficiency, by using both add-on technologies for waste heat recovery and machine learning applications.
  •  
8.
  • Campillo, Javier, 1982- (författare)
  • From Passive to Active Electric Distribution Networks
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Large penetration of distributed generation from variable renewable energy sources, increased consumption flexibility on the demand side and the electrification of transportation pose great challenges to existing and future electric distribution networks. This thesis studies the roles of several actors involved in electric distribution systems through electricity consumption data analysis and simulation models. Results show that real-time electricity pricing adoption in the residential sector offers economic benefits for end consumers. This occurs even without the adoption of demand-side management strategies, while real-time pricing also brings new opportunities for increasing consumption flexibility. This flexibility will play a critical role in the electrification of transportation, where scheduled charging will be required to allow large penetration of EVs without compromising the network's reliability and to minimize upgrades on the existing grid. All these issues add significant complexity to the existing infrastructure and conventional passive components are no longer sufficient to guarantee safe and reliable network operation. Active distribution networks are therefore required, and consequently robust and flexible modelling and simulation computational tools are needed for their optimal design and control. The modelling approach presented in this thesis offers a viable solution by using an equation-based object-oriented language that allows developing open source network component models that can be shared and used unambiguously across different simulation environments. 
  •  
9.
  • Nehler, Therese, 1976- (författare)
  • Non-Energy Benefits of Industrial Energy Efficiency : Roles and Potentials
  • 2019
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Climate and environmental targets place significant requirements on energy efficiency and improved industrial energy efficiency is viewed as one of the most important means of reducing CO2 emissions and mitigating climate change. Even though efforts have been undertaken to improve energy efficiency there is still the potential for further improvements to be made. The potential is a result of that proposed energy efficiency improvement measures are not implemented, even if judged as cost-effective.Besides improving energy efficiency, the implementation of energy efficiency improvements in industrial firms can generate additional beneficial effects: so-called non-energy benefits. Examples of non-energy benefits are: improved productivity, lower operation and maintenance costs, a better work environment, decreased waste and fewer external effects, such as lower emissions. This thesis has investigated the roles and potential of non-energy benefits in decisions on energy efficiency improvements from three perspectives: energy efficiency measures, energy efficiency investments and energy management activities.The results of the studies presented in this thesis demonstrated that different types of non-energy benefits were observed in various areas within industrial firms due to the energy efficiency measures, energy efficiency investments and energy management activities they have implemented. Studying energy efficiency measures and investments revealed that implementing one single energy efficiency measure or investment can generate several non-energy benefits. The studies also uncovered a relationship between the non-energy benefits, i.e. chain reactions of primary, secondary and further effects, in which one benefit can generate other types of benefits. Consequently, some non-energy benefits were observed immediately after the implementation of energy efficiency measures, direct effects, while others were perceived later on, indirect effects. Furthermore, extending the perspective by including energy management activities led to the recognition of novel non-energy benefits.The results of this thesis demonstrated that non-energy benefits were seldom acknowledged in decisions on energy efficiency improvements. However, the non-energy benefits’ character, diversity and relations among them enabled opportunities for the non-energy benefits to be included in decisions on energy efficiency in various ways. For instance, based on the results of these studies, monetised non-energy benefits could be included in investment calculations contributing to cost-effectiveness, while certain effects that are difficult to measure and quantify could be utilised qualitatively in investment evaluations as extra arguments, or, if important to the firm, as objectives for making the investment. Hence, depending on their type, non-energy benefits seemed to have different roles in decisions on industrial energy efficiency improvements.This thesis contributed with a comprehensive approach by investigating energy efficiency improvements and the related non-energy benefits through three perspectives. By combining the results from each perspective, the view on industrial firms’ decisions on energy efficiency improvements was widened. In this thesis it is concluded that the potential of non-energy benefits in decision-making on industrial energy efficiency improvements lies in the utilisation of all types of non-energy benefits and to consider all the roles that non-energy benefits may have. By utilising knowledge on non-energy benefits along with their roles observed in relation to previous implementations of energy efficiency improvements, non-energy benefits can impact decisions on new implementations.
  •  
10.
  • Åberg, Katarina, 1983- (författare)
  • Biomass conversion through syngas-based biorefineries : thermochemical process integration opportunities
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The replacement of fossil resources through renewable alternatives is one way to mitigate global climate change. Biomass is the only renewable source of carbon available for replacing oil as a refining feedstock. Therefore, it needs to be utilized not just as a fuel but for both biochemical and thermochemical conversion through biorefining. Optimizing and combining various conversion processes using a system perspective to maximize the valorization, biomass usage, and environmental benefits is of importance. This thesis work has evaluated the integration opportunities for various thermochemical conversion processes within a biorefinery system.The aim for all evaluated concepts were syngas production through gasification or reforming. Two potential residue streams from an existing biorefinery were evaluated as gasification feedstocks, thereby combining biochemical and thermochemical conversion. Torrefaction as a biomass pretreatment for gasification end-use was evaluated based on improved feedstock characteristics, process benefits, and integration aspects. A system concept, “Bio2Fuels”, was suggested and evaluated for low-temperature slow pyrolysis as a way to achieve simultaneous biomass refinement and transport driven CO2 negativity.Syngas was identified as a very suitable intermediate product for residue streams from biochemical conversion. Resulting syngas composition and quality showed hydrolysis residue as suitable gasification feedstock, providing some adjustments in the feedstock preparation. Gasification combined with torrefaction pretreatment demonstrated reduced syngas tar content. The co-gasification of biogas and wood in a FBG was successfully demonstrated with increased syngas H2/CO ratio compared to wood gasification, however high temperatures (≥1000°C) were required for efficient CH4 conversion. The demonstrated improved feedstock characteristics for torrefied biomass may facilitate gasification of biomass residue feedstocks in a biorefinery. Also, integration of a torrefaction unit on-site at the biorefinery or off-site with other industries could make use of excess low-value heat for the drying step with improved overall thermal efficiency. The Bio2Fuels concept provides a new application for slow pyrolysis. The experimental evaluation demonstrated significant hydrogen and carbon separation, and no significant volatilization of ash-forming elements (S and Cl excluded)  in low-temperature (<400°C) pyrolysis. The initial reforming test showed high syngas CH4 content, indicating the need for catalytic reforming.The collective results from the present work indicate that the application of thermochemical conversion processes into a biorefinery system, making use of by-products from biochemical conversion and biomass residues as feedstocks, has significant potential for energy integration, increased product output, and climate change mitigation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13
Typ av publikation
doktorsavhandling (10)
licentiatavhandling (3)
Typ av innehåll
övrigt vetenskapligt/konstnärligt (13)
Författare/redaktör
Dahlquist, Erik, Pro ... (11)
Hosain, Md Lokman, 1 ... (2)
Bel Fdhila, Rebei, A ... (2)
Li, Hailong, Associa ... (2)
Martin, Viktoria (1)
Österman, Cecilia, 1 ... (1)
visa fler...
Ahlgren, Fredrik, 19 ... (1)
Thern, Marcus, Docen ... (1)
Mondejar, Maria E., ... (1)
Larsson, Ann-Charlot ... (1)
Kyprianidis, Konstan ... (1)
Ghaem Sigarchian, Sa ... (1)
Söderström, Mats, 19 ... (1)
Malmquist, Anders (1)
Thollander, Patrik, ... (1)
Dahlquist, Erik (1)
Avelin, Anders, 1966 ... (1)
Wallin, Fredrik, 197 ... (1)
Bel Fdhila, Rebei, A ... (1)
Ritala, Risto, Profe ... (1)
Karlsson, Björn, Pro ... (1)
Lundström, Lukas, 19 ... (1)
Campillo, Javier, 19 ... (1)
Ghaviha, Nima (1)
Jianzhong, Wu, Profe ... (1)
Bohlin, Markus, Asso ... (1)
Ghaviha, Nima, 1987- (1)
Wallin, Fredrik, Sen ... (1)
Andersson, Evert, Pr ... (1)
Dahlquist, Erik, Pro ... (1)
Bohlin, Markus, Adj. ... (1)
Goverde, Rob M.P. Pr ... (1)
Nordin, Anders, Prof ... (1)
Gesteira, Moncho Gom ... (1)
Duwig, Christophe, A ... (1)
Nehler, Therese, 197 ... (1)
Wallin, Fredrik, Dr. (1)
Akander, Jan, Doktor (1)
Werner, Sven, Profes ... (1)
Mirmoshtaghi, Guilna ... (1)
Brandin, Jan, Profes ... (1)
Win, Kaung Myat (1)
Bel Fdhila, Rebei, A ... (1)
Persson, Tomas, Seni ... (1)
Thunman, Henrik, Pro ... (1)
Åberg, Katarina, 198 ... (1)
Pommer, Linda, forsk ... (1)
visa färre...
Lärosäte
Mälardalens universitet (9)
Umeå universitet (1)
Kungliga Tekniska Högskolan (1)
Linköpings universitet (1)
Linnéuniversitetet (1)
Högskolan Dalarna (1)
Språk
Engelska (13)
Forskningsämne (UKÄ/SCB)
Teknik (13)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy