SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Daly Robert) srt2:(2005-2009)"

Search: WFRF:(Daly Robert) > (2005-2009)

  • Result 1-9 of 9
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Graham, R. Robert, et al. (author)
  • Three functional variants of IFN regulatory factor 5 (IRF5) define risk and protective haplotypes for human lupus
  • 2007
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 104:16, s. 6758-6763
  • Journal article (peer-reviewed)abstract
    • Systematic genome-wide studies to map genomic regions associated with human diseases are becoming more practical. Increasingly, efforts will be focused on the identification of the specific functional variants responsible for the disease. The challenges of identifying causal variants include the need for complete ascertainment of genetic variants and the need to consider the possibility of multiple causal alleles. We recently reported that risk of systemic lupus erythematosus (SLE) is strongly associated with a common SNP in IFN regulatory factor 5 (IRF5), and that this variant altered spicing in a way that might provide a functional explanation for the reproducible association to SLE risk. Here, by resequencing and genotyping in patients with SLE, we find evidence for three functional alleles of IRF5: the previously described exon 1B splice site variant, a 30-bp in-frame insertion/deletion variant of exon 6 that alters a proline-, glutamic acid-, serine- and threonine-rich domain region, and a variant in a conserved polyA+ signal sequence that alters the length of the 3' UTR and stability of IRF5 mRNAs. Haplotypes of these three variants define at least three distinct levels of risk to SLE. Understanding how combinations of variants influence IRF5 function may offer etiological and therapeutic insights in SLE; more generally, IRF5 and SLE illustrates how multiple common variants of the same gene can together influence risk of common disease.
  •  
2.
  • Corkery, Robert W., 1967-, et al. (author)
  • Polymeric composition, adhesive including nanoparticle filler and composite production.
  • 2006
  • Patent (pop. science, debate, etc.)abstract
    • Nanoparticle fillers, including a novel halloysite nanoparticle filler, are generally cylindrical or tubular nanoparticles (e.g. rolled scroll-like shape). The filler is effectively employed in a polymer nanoparticle adhesive composite, contg. the halloysite nanoparticle or other equiv. naturally occurring nanotubular filler, in which the advantages of the nanoparticle filler are provided (e.g., reinforcement, flame retardant, etc.) while maintaining or improving mech. performance of the adhesive composite (e.g., adhesive strength and tack). [on SciFinder(R)]
  •  
3.
  • de Bakker, Paul I. W., et al. (author)
  • Transferability of tag SNPs in genetic association studies in multiple populations
  • 2006
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 38:11, s. 1298-1303
  • Journal article (peer-reviewed)abstract
    • A general question for linkage disequilibrium-based association studies is how power to detect an association is compromised when tag SNPs are chosen from data in one population sample and then deployed in another sample. Specifically, it is important to know how well tags picked from the HapMap DNA samples capture the variation in other samples. To address this, we collected dense data uniformly across the four HapMap population samples and eleven other population samples. We picked tag SNPs using genotype data we collected in the HapMap samples and then evaluated the effective coverage of these tags in comparison to the entire set of common variants observed in the other samples. We simulated case-control association studies in the non-HapMap samples under a disease model of modest risk, and we observed little loss in power. These results demonstrate that the HapMap DNA samples can be used to select tags for genome-wide association studies in many samples around the world.
  •  
4.
  • Lindblad-Toh, Kerstin, et al. (author)
  • Genome sequence, comparative analysis and haplotype structure of the domestic dog.
  • 2005
  • In: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 438:7069, s. 803-19
  • Journal article (peer-reviewed)abstract
    • Here we report a high-quality draft genome sequence of the domestic dog (Canis familiaris), together with a dense map of single nucleotide polymorphisms (SNPs) across breeds. The dog is of particular interest because it provides important evolutionary information and because existing breeds show great phenotypic diversity for morphological, physiological and behavioural traits. We use sequence comparison with the primate and rodent lineages to shed light on the structure and evolution of genomes and genes. Notably, the majority of the most highly conserved non-coding sequences in mammalian genomes are clustered near a small subset of genes with important roles in development. Analysis of SNPs reveals long-range haplotypes across the entire dog genome, and defines the nature of genetic diversity within and across breeds. The current SNP map now makes it possible for genome-wide association studies to identify genes responsible for diseases and traits, with important consequences for human and companion animal health.
  •  
5.
  • Couch, Fergus J., et al. (author)
  • AURKA F31I polymorphism and breast cancer risk in BRCA1 and BRCA2 mutation carriers: A consortium of investigators of modifiers of BRCA1/2 study
  • 2007
  • In: Cancer Epidemiology Biomarkers & Prevention. - 1538-7755. ; 16:7, s. 1416-1421
  • Journal article (peer-reviewed)abstract
    • The AURKA oncogene is associated with abnormal chromosome segregation and aneuploidy and predisposition to cancer. Amplification of AURKA has been detected at higher frequency in tumors from BRCA1 and BRCA2 mutation carriers than in sporadic breast tumors, suggesting that overexpression of AURKA and inactivation of BRCA1 and BRCA2 cooperate during tumor development and progression. The F31I polymorphism in AURKA has been associated with breast cancer risk in the homozygous state in prior studies. We evaluated whether the AURKA F31I polymorphism modifies breast cancer risk in BRCA1 and BRCA2 mutation carriers from the Consortium of Investigators of Modifiers of BRCA1/2. Consortium of Investigators of Modifiers of BRCA1/2 was established to provide sufficient statistical power through increased numbers of mutation carriers to identify polymorphisms that act as modifiers of cancer risk and can refine breast cancer risk estimates in BRCA1 and BRCA2 mutation carriers. A total of 4,935 BRCA1 and 2,241 BRCA2 mutation carriers and 11 individuals carrying both BRCA1 and BRCA2 mutations was genotyped for F31I. Overall, homozygosity for the 311 allele was not significantly associated with breast cancer risk in BRCA1 and BRCA2 carriers combined [hazard ratio (HR), 0.91; 95% confidence interval (95% CI), 0.77-1.061. Similarly, no significant association was seen in BRCA1 (HR, 0.90; 95% Cl, 0.75-1.08) or BRCA2 carriers (HR, 0.93; 95% CI, 0.67-1.29) or when assessing the modifying effects of either bilateral prophylactic oophorectomy or menopausal status of BRCA1 and BRCA2 carriers. In summary, the F31I polymorphism in AURKA is not associated with a modified risk of breast cancer in BRCA1 and BRCA2 carriers.
  •  
6.
  •  
7.
  •  
8.
  • Purcell, Shaun M., et al. (author)
  • Common polygenic variation contributes to risk of schizophrenia and bipolar disorder
  • 2009
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 460:7256, s. 748-752
  • Journal article (peer-reviewed)abstract
    • Schizophrenia is a severe mental disorder with a lifetime risk of about 1%, characterized by hallucinations, delusions and cognitive deficits, with heritability estimated at up to 80%(1,2). We performed a genome-wide association study of 3,322 European individuals with schizophrenia and 3,587 controls. Here we show, using two analytic approaches, the extent to which common genetic variation underlies the risk of schizophrenia. First, we implicate the major histocompatibility complex. Second, we provide molecular genetic evidence for a substantial polygenic component to the risk of schizophrenia involving thousands of common alleles of very small effect. We show that this component also contributes to the risk of bipolar disorder, but not to several non-psychiatric diseases.
  •  
9.
  • Winckler, Wendy, et al. (author)
  • Evaluation of common variants in the six known maturity-onset diabetes of the young (MODY) genes for association with type 2 diabetes
  • 2007
  • In: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 56:3, s. 685-693
  • Journal article (peer-reviewed)abstract
    • An important question in human genetics is the extent to which genes causing monogenic forms of disease harbor common variants that may contribute to the more typical form of that disease. We aimed to comprehensively evaluate the extent to which common variation irk the six known maturity-onset diabetes of the young (MODY) genes, which cause a monogenic form of type 2 diabetes, is associated with type 2 diabetes. Specifically, we determined patterns of common sequence variation in the genes encoding Gck, lpf1, Tcf2, and NeuroD1 (MODY2 and MODY4-MODY6, respectively), selected a comprehensive set of 107 tag single nucleotide polymorphisms (SNPs) that captured common variation, and genotyped each in 4,206 patients and control subjects from Sweden, Finland, and Canada (including family-based studies and unrelated case-control subjects). All SNPs with a nominal P value < 0.1 for association to type 2 diabetes in this initial screen were then genotyped in an additional 4,470 subjects from North America and Poland. Of 30 nominally significant SNPs from the initial sample, 8 achieved consistent results in the replication sample. We found the strongest effect at rs757210 in intron 2 of TCF2, with corrected P values < 0.01 for an odds ratio (OR) of 1.13. This association was observed again in an independent sample of 5,891 unrelated case and control subjects and 500 families from the U.K., for an overall OR of 1.12 and a P value < 10(-6) in > 15,000 samples. We combined these results with our previous studies on HNF4 alpha and TCF1 and explicitly tested for gene-gene interactions among these variants and with several known type 2 diabetes susceptibility loci, and we found no genetic interactions between these six genes. We conclude that although rare variants in these six genes explain most cases of MODY, common variants in these same genes contribute very modestly, if at all, to the common form of type 2 diabetes.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-9 of 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view