SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Davis L) srt2:(1990-1994)"

Search: WFRF:(Davis L) > (1990-1994)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Davis, J.L., et al. (author)
  • Ground-based measurement of gradients in the “wet” radio refractivity of air
  • 1993
  • In: Radio Science. - 0048-6604 .- 1944-799X. ; 28:6, s. 1003-1018
  • Journal article (peer-reviewed)abstract
    • We have used a ground-based microwave radiometer, known as a water vapor radiometer, to investigate the local spatial and temporal variation of the wet propagation delay for a site on the west coast of Sweden. The data were obtained from a wide range of azimuths and from elevation angles greater than 23.6-degrees (air mass 2.5). Visual inspection of the data suggested a simple ‘'cosine azimuth” variation, implying that a first-order gradient model was required. This model was adequate for short time spans up to approximately 15 min, but significant temporal variations in the gradient suggested to us that we include gradient rate terms. The resulting six-parameter model has proven adequate (rms delay residual approximately 1 mm) for up to 30 min of data. Assuming a simple exponential profile for the wet refractivity gradient, the estimated gradient parameters imply average surface wet-refractivity horizontal gradients of order of 0.1-1 N km-1. These gradients are larger, by 1-2 orders of magnitude, than gradients determined by others by averaging over long (approximately 100-km) distances. This result implies that for applications that are sensitive to local gradients, such as wet propagation-delay models for radio-interferometric geodetic studies, the use of meteorological data from widely spread stations may be inadequate. The gradient model presented here is inadequate for times longer than about 30 min. even if no gradients are present, because of the complicated stochastic like temporal behavior of the wet atmosphere. When gradients are present, they can change magnitude by approximately 50% over 10-15 min. Nevertheless, our ability to fit the radiometer data implies that on timescales 23.6-degrees, the local structure of the wet atmosphere can be described with a simple model. (The model is not limited to this range of elevation angles in principle.) The estimated gradient and gradient rate vectors have preferred directions, which indicates a prevailing structure in the three-dimensional temperature and humidity fields, possibly related to systematic behavior in large-scale weather systems and/or the local air-land-sea interaction at this site.
  •  
2.
  • Elgered, Gunnar, 1955, et al. (author)
  • Geodesy by Radio Interferometry: Water Vapor Radiometry for Estimation of the Wet Delay
  • 1991
  • In: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 96:B4, s. 6541-6555
  • Journal article (peer-reviewed)abstract
    • An important source of error in very-long-baseline interferometry (VLBI) estimates of baseline length is unmodeled variations of the refractivity of the neutral atmosphere along the propagation path of the radio signals. We present and discuss the method of using data from a water vapor radiometer (WVR) to correct for the propagation delay caused by atmospheric water vapor, the major cause of these variations. Data from different WVRs are compared with estimated propagation delays obtained by Kalman filtering of the VLBI data themselves. The consequences of using either WVR data or Kalman filtering to correct for atmospheric propagation delay at the Onsala VLBI site are investigated by studying the repeatability of estimated baseline lengths from Onsala to several other sites. The lengths of the baselines range from 919 to 7941 km. The repeatability obtained for baseline length estimates shows that the methods of water vapor radiometry and Kalman filtering offer comparable accuracies when applied to VLBI observations obtained in the climate of the Swedish west coast. For the most frequently measured baseline in this study, the use of WVR data yielded a 13% smaller weighted-root-mean-square (WRMS) scatter of the baseline length estimates compared to the use of a Kalman filter. It is also clear that the “best” minimum elevation angle for VLBI observations depends on the accuracy of the determinations of the total propagation delay to be used, since the error in this delay increases with increasing air mass. For use of WVR data along with accurate determinations of total surface pressure, the best minimum is about 20 degrees; for use of a model for the wet delay based on the humidity and temperature at the ground, the best minimum is about 35 degrees.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2
Type of publication
journal article (2)
Type of content
peer-reviewed (2)
Author/Editor
Elgered, Gunnar, 195 ... (2)
Davis, J.L (2)
Shapiro, I.I. (1)
Niell, A. E. (1)
Herring, T.A. (1)
Kuehn, C.E. (1)
University
Chalmers University of Technology (2)
Language
English (2)
Research subject (UKÄ/SCB)
Natural sciences (2)
Engineering and Technology (2)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view