SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Davis Matthew V.) srt2:(2010-2014)"

Search: WFRF:(Davis Matthew V.) > (2010-2014)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Ikram, M. Arfan, et al. (author)
  • Common variants at 6q22 and 17q21 are associated with intracranial volume
  • 2012
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 44:5, s. 539-544
  • Journal article (peer-reviewed)abstract
    • During aging, intracranial volume remains unchanged and represents maximally attained brain size, while various interacting biological phenomena lead to brain volume loss. Consequently, intracranial volume and brain volume in late life reflect different genetic influences. Our genome-wide association study (GWAS) in 8,175 community-dwelling elderly persons did not reveal any associations at genome-wide significance (P < 5 x 10(-8)) for brain volume. In contrast, intracranial volume was significantly associated with two loci: rs4273712 (P = 3.4 x 10(-11)), a known height-associated locus on chromosome 6q22, and rs9915547 (P = 1.5 x 10(-12)), localized to the inversion on chromosome 17q21. We replicated the associations of these loci with intracranial volume in a separate sample of 1,752 elderly persons (P = 1.1 x 10(-3) for 6q22 and 1.2 x 10(-3) for 17q21). Furthermore, we also found suggestive associations of the 17q21 locus with head circumference in 10,768 children (mean age of 14.5 months). Our data identify two loci associated with head size, with the inversion at 17q21 also likely to be involved in attaining maximal brain size.
  •  
2.
  • Taal, H. Rob, et al. (author)
  • Common variants at 12q15 and 12q24 are associated with infant head circumference
  • 2012
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 44:5, s. 532-538
  • Journal article (peer-reviewed)abstract
    • To identify genetic variants associated with head circumference in infancy, we performed a meta-analysis of seven genome-wide association studies (GWAS) (N = 10,768 individuals of European ancestry enrolled in pregnancy and/or birth cohorts) and followed up three lead signals in six replication studies (combined N = 19,089). rs7980687 on chromosome 12q24 (P = 8.1 x 10(-9)) and rs1042725 on chromosome 12q15 (P = 2.8 x 10(-10)) were robustly associated with head circumference in infancy. Although these loci have previously been associated with adult height(1), their effects on infant head circumference were largely independent of height (P = 3.8 x 10(-7) for rs7980687 and P = 1.3 x 10(-7) for rs1042725 after adjustment for infant height). A third signal, rs11655470 on chromosome 17q21, showed suggestive evidence of association with head circumference (P = 3.9 x 10(-6)). SNPs correlated to the 17q21 signal have shown genome-wide association with adult intracranial volume(2), Parkinson's disease and other neurodegenerative diseases(3-5), indicating that a common genetic variant in this region might link early brain growth with neurological disease in later life.
  •  
3.
  • Richards, Stephen, et al. (author)
  • Genome Sequence of the Pea Aphid Acyrthosiphon pisum
  • 2010
  • In: PLoS biology. - : Public Library of Science (PLoS). - 1544-9173 .- 1545-7885. ; 8:2, s. e1000313-
  • Journal article (peer-reviewed)abstract
    • Aphids are important agricultural pests and also biological models for studies of insect-plant interactions, symbiosis, virus vectoring, and the developmental causes of extreme phenotypic plasticity. Here we present the 464 Mb draft genome assembly of the pea aphid Acyrthosiphon pisum. This first published whole genome sequence of a basal hemimetabolous insect provides an outgroup to the multiple published genomes of holometabolous insects. Pea aphids are host-plant specialists, they can reproduce both sexually and asexually, and they have coevolved with an obligate bacterial symbiont. Here we highlight findings from whole genome analysis that may be related to these unusual biological features. These findings include discovery of extensive gene duplication in more than 2000 gene families as well as loss of evolutionarily conserved genes. Gene family expansions relative to other published genomes include genes involved in chromatin modification, miRNA synthesis, and sugar transport. Gene losses include genes central to the IMD immune pathway, selenoprotein utilization, purine salvage, and the entire urea cycle. The pea aphid genome reveals that only a limited number of genes have been acquired from bacteria; thus the reduced gene count of Buchnera does not reflect gene transfer to the host genome. The inventory of metabolic genes in the pea aphid genome suggests that there is extensive metabolite exchange between the aphid and Buchnera, including sharing of amino acid biosynthesis between the aphid and Buchnera. The pea aphid genome provides a foundation for post-genomic studies of fundamental biological questions and applied agricultural problems.
  •  
4.
  •  
5.
  • Weinstein, John N., et al. (author)
  • The cancer genome atlas pan-cancer analysis project
  • 2013
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 45:10, s. 1113-1120
  • Research review (peer-reviewed)abstract
    • The Cancer Genome Atlas (TCGA) Research Network has profiled and analyzed large numbers of human tumors to discover molecular aberrations at the DNA, RNA, protein and epigenetic levels. The resulting rich data provide a major opportunity to develop an integrated picture of commonalities, differences and emergent themes across tumor lineages. The Pan-Cancer initiative compares the first 12 tumor types profiled by TCGA. Analysis of the molecular aberrations and their functional roles across tumor types will teach us how to extend therapies effective in one cancer type to others with a similar genomic profile. © 2013 Nature America, Inc. All rights reserved.
  •  
6.
  • Roy, Sushmita, et al. (author)
  • Identification of functional elements and regulatory circuits by Drosophila modENCODE.
  • 2010
  • In: Science (New York, N.Y.). - : American Association for the Advancement of Science (AAAS). - 1095-9203 .- 0036-8075. ; 330:6012, s. 1787-1797
  • Journal article (peer-reviewed)abstract
    • To gain insight into how genomic information is translated into cellular and developmental programs, the Drosophila model organism Encyclopedia of DNA Elements (modENCODE) project is comprehensively mapping transcripts, histone modifications, chromosomal proteins, transcription factors, replication proteins and intermediates, and nucleosome properties across a developmental time course and in multiple cell lines. We have generated more than 700 data sets and discovered protein-coding, noncoding, RNA regulatory, replication, and chromatin elements, more than tripling the annotated portion of the Drosophila genome. Correlated activity patterns of these elements reveal a functional regulatory network, which predicts putative new functions for genes, reveals stage- and tissue-specific regulators, and enables gene-expression prediction. Our results provide a foundation for directed experimental and computational studies in Drosophila and related species and also a model for systematic data integration toward comprehensive genomic and functional annotation.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view