SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Eggl Siegfried) srt2:(2019)"

Search: WFRF:(Eggl Siegfried) > (2019)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Chesley, Steven R., et al. (author)
  • Development of a Realistic Set of Synthetic Earth Impactor Orbits
  • 2019
  • In: 2019 IEEE Aerospace Conference. - : IEEE.
  • Conference paper (peer-reviewed)abstract
    • We present a refined method for creating orbits of fictitious Earth impactors that are representative of the actual impactor population. Such orbits are crucial inputs to a variety of investigations, such as those that seek to discern how well and how early a particular asteroid survey can detect impactors, or to understand the progression of impact probability as an object is tracked after discovery. We will describe our method, which relies on Öpik's b-plane formalism, and place it in context with previous approaches. While the Öplk framework assumes the restricted three body problem with a circular Earth orbit, our final synthetic impactors are differentially corrected to ensure an impact in the N-body dynamics of the solar system. We also test the validity of the approach through brute force numerical tests, demonstrating that the properties of our synthetic impactor population are consistent with the underlying Near-Earth Object (NEO) population from which it is derived. The impactor population is, however, distinct from the NEO population, not only by virtue of the proximity of the asteroid orbit to that of the Earth, but also because low encounter velocities are strongly favored. Thus the impacting population has an increased prominence of low inclination and low eccentricity orbits, and Earth-like orbits in particular, as compared to the NEO population as a whole.
  •  
2.
  • Manser, Christopher J., et al. (author)
  • A planetesimal orbiting within the debris disc around a white dwarf star
  • 2019
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 1095-9203 .- 0036-8075. ; 364:6435, s. 66-69
  • Journal article (peer-reviewed)abstract
    • Many white dwarf stars show signs of having accreted smaller bodies, implying that they may host planetary systems. A small number of these systems contain gaseous debris discs, visible through emission lines. We report a stable 123.4-minute periodic variation in the strength and shape of the Ca II emission line profiles originating from the debris disc around the white dwarf SDSS J122859.93+104032.9. We interpret this short-period signal as the signature of a solid-body planetesimal held together by its internal strength.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view