SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Eichler Evan) srt2:(2010-2014)"

Search: WFRF:(Eichler Evan) > (2010-2014)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Helsmoortel, Celine, et al. (author)
  • A SWI/SNF-related autism syndrome caused by de novo mutations in ADNP
  • 2014
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 46:4, s. 380-
  • Journal article (peer-reviewed)abstract
    • Despite the high heritability of autism spectrum disorders (ASD), characterized by persistent deficits in social communication and interaction and restricted, repetitive patterns of behavior, interests or activities(1), a genetic diagnosis can be established in only a minority of patients. Known genetic causes include chromosomal aberrations, such as the duplication of the 15q11-13 region, and monogenic causes, as in Rett and fragile- X syndromes. The genetic heterogeneity within ASD is striking, with even the most frequent causes responsible for only 1% of cases at the most. Even with the recent developments in nextgeneration sequencing, for the large majority of cases no molecular diagnosis can be established(2-7). Here, we report ten patients with ASD and other shared clinical characteristics, including intellectual disability and facial dysmorphisms caused by a mutation in ADNP, a transcription factor involved in the SWI/ SNF remodeling complex. We estimate this gene to be mutated in at least 0.17% of ASD cases, making it one of the most frequent ASD- associated genes known to date.
  •  
2.
  • Lazaridis, Iosif, et al. (author)
  • Ancient human genomes suggest three ancestral populations for present-day Europeans
  • 2014
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 513:7518, s. 409-
  • Journal article (peer-reviewed)abstract
    • We sequenced the genomes of a similar to 7,000-year-old farmer from Germany and eight similar to 8,000-year-old hunter-gatherers from Luxembourg and Sweden. We analysed these and other ancient genomes(1-4) with 2,345 contemporary humans to show that most present-day Europeans derive from at least three highly differentiated populations: west European hunter-gatherers, who contributed ancestry to all Europeans but not to Near Easterners; ancient north Eurasians related to Upper Palaeolithic Siberians(3), who contributed to both Europeans and Near Easterners; and early European farmers, who were mainly of Near Eastern origin but also harboured west European hunter-gatherer related ancestry. We model these populations' deep relationships and show that early European farmers had similar to 44% ancestry from a 'basal Eurasian' population that split before the diversification of other non-African lineages.
  •  
3.
  • Mefford, Heather C, et al. (author)
  • Rare copy number variants are an important cause of epileptic encephalopathies
  • 2011
  • In: Annals of Neurology. - : Wiley. - 0364-5134 .- 1531-8249. ; 70:6, s. 974-985
  • Journal article (peer-reviewed)abstract
    • OBJECTIVE:Rare copy number variants (CNVs)-deletions and duplications-have recently been established as important risk factors for both generalized and focal epilepsies. A systematic assessment of the role of CNVs in epileptic encephalopathies, the most devastating and often etiologically obscure group of epilepsies, has not been performed.METHODS:We evaluated 315 patients with epileptic encephalopathies characterized by epilepsy and progressive cognitive impairment for rare CNVs using a high-density, exon-focused, whole-genome oligonucleotide array.RESULTS:We found that 25 of 315 (7.9%) of our patients carried rare CNVs that may contribute to their phenotype, with at least one-half being clearly or likely pathogenic. We identified 2 patients with overlapping deletions at 7q21 and 2 patients with identical duplications of 16p11.2. In our cohort, large deletions were enriched in affected individuals compared to controls, and 4 patients harbored 2 rare CNVs. We screened 2 novel candidate genes found within the rare CNVs in our cohort but found no mutations in our patients with epileptic encephalopathies. We highlight several additional novel candidate genes located in CNV regions.INTERPRETATION:Our data highlight the significance of rare CNVs in the epileptic encephalopathies, and we suggest that CNV analysis should be considered in the genetic evaluation of these patients. Our findings also highlight novel candidate genes for further study.
  •  
4.
  • Miller, David T., et al. (author)
  • Consensus Statement : Chromosomal Microarray Is a First-Tier Clinical Diagnostic Test for Individuals with Developmental Disabilities or Congenital Anomalies
  • 2010
  • In: American Journal of Human Genetics. - : Elsevier BV. - 0002-9297 .- 1537-6605. ; 86:5, s. 749-764
  • Journal article (peer-reviewed)abstract
    • Chromosomal microarray (CMA) is increasingly utilized for genetic testing of individuals with unexplained developmental delay/intellectual disability (DD/ID), autism spectrum disorders (ASD), or multiple congenital anomalies (MCA). Performing CMA and G-banded karyotyping on every patient substantially increases the total cost of genetic testing. The International Standard Cytogenomic Array (ISCA) Consortium held two international workshops and conducted a literature review of 33 studies, including 21,698 patients tested by CMA. We provide an evidence-based summary of clinical cytogenetic testing comparing CMA to G-banded karyotyping with respect to technical advantages and limitations, diagnostic yield for various types of chromosomal aberrations, and issues that affect test interpretation. CMA offers a much higher diagnostic yield (15%-20%) for genetic testing of individuals with unexplained DD/ID, ASD, or MCA than a G-banded karyotype (similar to 3%, excluding Down syndrome and other recognizable chromosomal syndromes), primarily because of its higher sensitivity for submicroscopic deletions and duplications. Truly balanced rearrangements and low-level mosaicism are generally not detectable by arrays, but these are relatively infrequent causes of abnormal phenotypes in this population (<1%). Available evidence strongly supports the use of CMA in place of G-banded karyotyping as the first-tier cytogenetic diagnostic test for patients with DD/ID, ASD, or MCA. G-banded karyotype analysis should be reserved for patients with obvious chromosomal syndromes (e.g., Down syndrome), a family history of chromosomal rearrangement, or a history of multiple miscarriages.
  •  
5.
  • Warren, Wesley C, et al. (author)
  • The genome of a songbird
  • 2010
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 464:7289, s. 757-762
  • Journal article (peer-reviewed)abstract
    • The zebra finch is an important model organism in several fields with unique relevance to human neuroscience. Like other songbirds, the zebra finch communicates through learned vocalizations, an ability otherwise documented only in humans and a few other animals and lacking in the chicken-the only bird with a sequenced genome until now. Here we present a structural, functional and comparative analysis of the genome sequence of the zebra finch (Taeniopygia guttata), which is a songbird belonging to the large avian order Passeriformes. We find that the overall structures of the genomes are similar in zebra finch and chicken, but they differ in many intrachromosomal rearrangements, lineage-specific gene family expansions, the number of long-terminal-repeat-based retrotransposons, and mechanisms of sex chromosome dosage compensation. We show that song behaviour engages gene regulatory networks in the zebra finch brain, altering the expression of long non-coding RNAs, microRNAs, transcription factors and their targets. We also show evidence for rapid molecular evolution in the songbird lineage of genes that are regulated during song experience. These results indicate an active involvement of the genome in neural processes underlying vocal communication and identify potential genetic substrates for the evolution and regulation of this behaviour.
  •  
6.
  • Wetterbom, Anna, 1977- (author)
  • Genome and Transcriptome Comparisons between Human and Chimpanzee
  • 2010
  • Doctoral thesis (other academic/artistic)abstract
    • The chimpanzee is humankind’s closest living relative and the two species diverged ~6 million years ago. Comparative studies of the human and chimpanzee genomes and transcriptomes are of great interest to understand the molecular mechanisms of speciation and the development of species-specific traits. The aim of this thesis is to characterize differences between the two species with regard to their genome sequences and the resulting transcript profiles. The first two papers focus on indel divergence and in particular, indels causing premature termination codons (PTCs) in 8% of the chimpanzee genes. The density of PTC genes is correlated with both the distance to the telomere and the indel divergence. Many PTC genes have several associated transcripts and since not all are affected by the PTC we propose that PTCs may affect the pattern of expressed isoforms. In the third paper, we investigate the transcriptome divergence in cerebellum, heart and liver, using high-density exon arrays. The results show that gene expression differs more between tissues than between species. Approximately 15% of the genes are differentially expressed between species, and half of the genes show different splicing patterns. We identify 28 cassette exons which are only included in one of the species, often in a tissue-specific manner. In the fourth paper, we use massive parallel sequencing to study the chimpanzee transcriptome in frontal cortex and liver. We estimate gene expression and search for novel transcribed regions (TRs). The majority of TRs are located close to genes and possibly extend the annotations. A subset of TRs are not found in the human genome. The brain transcriptome differs substantially from that of the liver and we identify a subset of genes enriched with TRs in frontal cortex. In conclusion, this thesis provides evidence of extensive genomic and transcriptomic variability between human and chimpanzee. The findings provide a basis for further studies of the underlying differences affecting phenotypic divergence between human and chimpanzee.      
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view