SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Elgali Ibrahim) srt2:(2016)"

Search: WFRF:(Elgali Ibrahim) > (2016)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Elgali, Ibrahim, et al. (author)
  • Guided bone regeneration using resorbable membrane and different bone substitutes : Early histological and molecular events
  • 2016
  • In: Acta Biomaterialia. - : Elsevier BV. - 1742-7061 .- 1878-7568. ; 29, s. 409-423
  • Journal article (peer-reviewed)abstract
    • Bone insufficiency remains a major challenge for bone-anchored implants. The combination of guided bone regeneration (GBR) and bone augmentation is an established procedure to restore the bone. However, a proper understanding of the interactions between the bone substitute and GBR membrane materials and the bone-healing environment is lacking. This study aimed to investigate the early events of bone healing and the cellular activities in response to a combination of GBR membrane and different calcium phosphate (CaP) materials. Defects were created in the trabecular region of rat femurs, and filled with deproteinized bovine bone (DBB), hydroxyapatite (HA) or strontium-doped HA (SrHA) or left empty (sham). All the defects were covered with an extracellular matrix membrane. Defects were harvested after 12 h, 3 d and 6 d for histology/histomorphometry, immunohistochemistry and gene expression analyses. Histology revealed new bone, at 6 d, in all the defects. Larger amount of bone was observed in the SrHA-filled defect. This was in parallel with the reduced expression of osteoclastic genes (CR and CatK) and the osteoblast-osteoclast coupling gene (RANKL) in the SrHA defects. Immunohistochemistry indicated fewer osteoclasts in the SrHA defects. The observations of CD68 and periostin-expressing cells in the membrane per se indicated that the membrane may contribute to the healing process in the defect. It is concluded that the bone-promoting effects of Sr in vivo are mediated by a reduction in catabolic and osteoblast-osteoclast coupling processes. The combination of a bioactive membrane and CaP bone substitute material doped with Sr may produce early synergistic effects during GBR. Statement of significance The study provides novel molecular, cellular and structural evidence on the promotion of early bone regeneration in response to synthetic strontium-containing hydroxyapatite (SrHA) substitute, in combination with a resorbable, guided bone regeneration (GBR) membrane. The prevailing view, based mainly upon in vitro data, is that the beneficial effects of Sr are exerted by the stimulation of bone-forming cells (osteoblasts) and the inhibition of bone-resorbing cells (osteoclasts). In contrast, the present study demonstrates that the local effect of Sr in vivo is predominantly via the inhibition of osteoclast number and activity and the reduction of osteoblast-osteoclast coupling. This experimental data will form the basis for clinical studies, using this material as an interesting bone substitute for guided bone regeneration.
  •  
2.
  • Turri, Alberto, 1973, et al. (author)
  • Guided bone regeneration is promoted by the molecular events in the membrane compartment.
  • 2016
  • In: Biomaterials. - : Elsevier BV. - 1878-5905 .- 0142-9612. ; 84, s. 167-183
  • Journal article (peer-reviewed)abstract
    • The working hypothesis of guided bone regeneration (GBR) is that the membrane physically excludes non-osteogenic tissues from interfering with bone healing. However, the underlying mechanisms are insufficiently explained. This study aimed to investigate the molecular and structural pattern of bone healing in trabecular bone defects, with and without naturally derived resorbable membrane. Defects were created in rat femurs and treated with the membrane or left empty (sham). After 3d, 6d and 28d, the defect sites and membranes were harvested and analyzed with histology, histomorphometry, quantitative-polymerase chain reaction (qPCR), Western blot (WB) and immunohistochemistry (IHC). Histomorphometry demonstrated that the presence of the membrane promoted bone formation in early and late periods. This was in parallel with upregulation of cell recruitment and coupled bone remodeling genes in the defect. Cells recruited into the membrane expressed signals for bone regeneration (BMP-2, FGF-2, TGF-β1 and VEGF). Whereas the native membrane contained FGF-2 but not BMP-2, an accumulation of FGF-2 and BMP-2 proteins and immunoreactive cells were demonstrated by WB and IHC in the invivo implanted membrane. The results provide cellular and molecular evidence suggesting a novel role for the membrane during GBR, by acting as a bioactive compartment rather than a passive barrier.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view