SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Ellis Hanna) srt2:(2010-2014)"

Search: WFRF:(Ellis Hanna) > (2010-2014)

  • Result 1-10 of 45
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  • Boria, Ilenia, et al. (author)
  • The ribosomal basis of Diamond-Blackfan Anemia : mutation and database update
  • 2010
  • In: Human Mutation. - : Hindawi Limited. - 1059-7794 .- 1098-1004. ; 31:12, s. 1269-1279
  • Journal article (peer-reviewed)abstract
    • Diamond-Blackfan Anemia (DBA) is characterized by a defect of erythroid progenitors and, clinically, by anemia and malformations. DBA exhibits an autosomal dominant pattern of inheritance with incomplete penetrance. Currently nine genes, all encoding ribosomal proteins (RP), have been found mutated in approximately 50% of patients. Experimental evidence supports the hypothesis that DBA is primarily the result of defective ribosome synthesis. By means of a large collaboration among six centers, we report here a mutation update that includes nine genes and 220 distinct mutations, 56 of which are new. The DBA Mutation Database now includes data from 355 patients. Of those where inheritance has been examined, 125 patients carry a de novo mutation and 72 an inherited mutation. Mutagenesis may be ascribed to slippage in 65.5% of indels, whereas CpG dinucleotides are involved in 23% of transitions. Using bioinformatic tools we show that gene conversion mechanism is not common in RP genes mutagenesis, notwithstanding the abundance of RP pseudogenes. Genotype-phenotype analysis reveals that malformations are more frequently associated with mutations in RPL5 and RPL11 than in the other genes. All currently reported DBA mutations together with their functional and clinical data are included in the DBA Mutation Database.
  •  
9.
  • Ellis, Hanna, 1985- (author)
  • Characterization of dye-sensitized solar cells : Components for environmentally friendly photovoltaics
  • 2014
  • Licentiate thesis (other academic/artistic)abstract
    • As fossil fuels, the major source of energy used today, create the greenhouse gas carbon dioxide which causes global warming, alternative energy sources are necessary in the future. There is a need for different types of renewable energy sources such as hydropower, windpower, wave- power and photovoltaics since different parts of the world have different possibilities. The sun is a never ending energy source. Photovoltaics use the energy of the sun and converts it into electricity. There are different types of photovoltaics and a combination of them could provide humankind with energy in a sustainable way. In this thesis dye-sensitized solar cells are investigated. Materials for the counter electrode have been investigated and resulting in a polymer based cathode outperforming the traditionally used platinized counter electrode in a cobalt-based redox mediator system (paper I). The sensitizer of the TiO2 was investigated, in this study by modifications of the π-linker unit in an organic donor-linker-acceptor based dye. Four new dyes were synthesized, all four showing extended absorption spectra compared to the reference dye. However, it was found that increasing the absorption spectrum does not neces- sarily increase the power conversion efficiency of the solar cell (paper II). In the last part of this thesis, water-based electrolyte dye-sensitized solar cells were investigated. A hydrophilic dye with glycolic chains close to the center of regeneration was synthesized. The results show increased wettability by water-based electrolyte for the sensitized surface, increased regenera- tion and performance for the hydrophilic dye compared to a hydrophobic dye (paper III). The glycolic chains complex with small cations such as Na+ and K+ in the electrolyte, this proba- bly facilitate the regeneration of the hydrophilic dye even further (paper IV). In this thesis new materials for a more environmentally friendly dye-sensitized solar cell are investigated.
  •  
10.
  • Ellis, Hanna, et al. (author)
  • Linker Unit Modification of Triphenylamine-Based Organic Dyes for Efficient Cobalt Mediated Dye-Sensitized Solar Cells
  • 2013
  • In: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 117:41, s. 21029-21036
  • Journal article (peer-reviewed)abstract
    • Linker unit modification of donor-linker-acceptor-based organic dyes was investigated with respect to the spectral and physicochemical properties of the dyes. The spectral response for a series of triphenylamine (TPA)-based organic dyes, called LEG1-4, was shifted into the red wavelength region, and the extinction coefficient of the dyes was increased by introducing different substituted dithiophene units on the pi-conjugated linker. The photovoltaic performance of dye-sensitized solar cells (DSCs) incorporating the different dyes in combination with cobalt-based electrolytes was found to be dependent on dye binding. The binding morphology of the dyes on the TiO2 was studied using photoelectron spectroscopy, which demonstrated that the introduction of alkyl chains and different substituents on the dithiophene linker unit resulted in a larger tilt angle of the dyes with respect to the normal of the TiO2-surface, and thereby a lower surface coverage. The good photovoltaic performance for cobalt electrolyte-based DSCs found here and by other groups using TPA-based organic dyes with a cyclopentadithiophene linker unit substituted with alkyl chains was mainly attributed to the extended spectral response of the dye, whereas the larger tilt angle of the dye with respect to the TiO2-surface resulted in less efficient packing of the dye molecules and enhanced recombination between electrons in TiO2 and Co(III) species in the electrolyte.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 45

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view