SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Ertoprak A.) srt2:(2020)"

Search: WFRF:(Ertoprak A.) > (2020)

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Cederwall, B., et al. (author)
  • Isospin Properties of Nuclear Pair Correlations from the Level Structure of the Self-Conjugate Nucleus Ru-88
  • 2020
  • In: Physical Review Letters. - : AMER PHYSICAL SOC. - 0031-9007 .- 1079-7114. ; 124:6
  • Journal article (peer-reviewed)abstract
    • The low-lying energy spectrum of the extremely neutron-deficient self-conjugate (N = Z) nuclide Ru-88(44)44 has been measured using the combination of the Advanced Gamma Tracking Array (AGATA) spectrometer, the NEDA and Neutron Wall neutron detector arrays, and the DIAMANT charged particle detector array. Excited states in Ru-88 were populated via the Fe-54(Ar-36, 2n gamma)Ru-88* fusion-evaporation reaction at the Grand Accelerateur National d'Ions Lourds (GANIL) accelerator complex. The observed gamma-ray cascade is assigned to Ru-88 using clean prompt gamma-gamma-2-neutron coincidences in anticoincidence with the detection of charged particles, confirming and extending the previously assigned sequence of low-lying excited states. It is consistent with a moderately deformed rotating system exhibiting a band crossing at a rotational frequency that is significantly higher than standard theoretical predictions with isovector pairing, as well as observations in neighboring N > Z nuclides. The direct observation of such a "delayed" rotational alignment in a deformed N = Z nucleus is in agreement with theoretical predictions related to the presence of strong isoscalar neutron-proton pair correlations.
  •  
2.
  • Cederwall, Bo, 1964-, et al. (author)
  • Isospin Properties of Nuclear Pair Correlations from the Level Structure of the Self-Conjugate Nucleus Ru 88
  • 2020
  • In: Physical Review Letters. - : American Physical Society (APS). - 0031-9007 .- 1079-7114. ; 124:6
  • Journal article (peer-reviewed)abstract
    • The low-lying energy spectrum of the extremely neutron-deficient self-conjugate (N = Z) nuclide 88Ru has been measured using the combination of the Advanced Gamma Tracking Array (AGATA)spectrometer, the NEDA, and Neutron Wall neutron detector arrays, and the DIAMANT charged particle detector array. Excited states in 88 Ru were populated via the 54 Feð 36 Ar; 2nγÞ 88 Ru fusion-evaporationreaction at the Grand Accélérateur National d’Ions Lourds (GANIL) accelerator complex. The observed γ-ray cascade is assigned to 88 Ru using clean prompt γ-γ-2-neutron coincidences in anticoincidence with the detection of charged particles, confirming and extending the previously assigned sequence of low-lying excited states. It is consistent with a moderately deformed rotating system exhibiting a band crossing at a rotational frequency that is significantly higher than standard theoretical predictions with isovector pairing, as well as observations in neighboring N > Z nuclides. The direct observation of such a “delayed” rotational alignment in a deformed N 1⁄4 Z nucleus is in agreement with theoretical predictions related to the presence of strong isoscalar neutron-proton pair correlations.
  •  
3.
  • Ertoprak, A., et al. (author)
  • Lifetimes of core-excited states in semi-magic Rh-95
  • 2020
  • In: European Physical Journal A. - : SPRINGER. - 1434-6001 .- 1434-601X. ; 56:11
  • Journal article (peer-reviewed)abstract
    • Lifetimes of negative-parity states have been determined in the neutron deficient semi-magic (N = 50) nucleus Rh-95. The fusion-evaporation reaction Ni-58(Ca-40, 3p) was used to populate high-spin states in Rh-95 at the Grand Accelerateur National d'Ions Lourds (GANIL) accelerator facility. The results were obtained using the Doppler Shift Attenuation Method (DSAM) based on the Doppler broadened line shapes produced during the slowing down process of the residual nuclei in a thick 6 mg/cm(2) metallic target. B(M1) and B(E2) reduced transition strengths are compared with predictions from large-scale shell-model calculations. state-of-the-art theory. Remarkably, the structural features up to moderate angular momentum of nuclei immediately below the N = Z = 50 shell closures can be described with high accuracy in a very simple way by shell-model calculations including only the g(9/2) and p(1/2) subshells. Of special interest is the neutron-proton pair coupling scheme which is expected to appear in the heaviest N=Z nuclei [1,2] and the seniority structure of the N = 50 isotones [3-7]. However, multiple core-excited states have been observed in the semi-magic nuclei of the Sn-100 region [8-10]. The theoretical study of those states is a challenging task, which requires a significantly larger model space for their interpretation. Transition probabilities between nuclear states provide important constraints for theoretical modelling of the structure of the nuclei of interest. Our previous lifetime study of the semimagic (N = 50) nucleus Ru-94 [ 11,12] provided information on the electromagnetic decay properties of neutron-core excited states. We now address lifetime measurements in its closest, more neutron deficient, isotone Rh-95 using the same DSAM technique. The experimental results have been interpreted within the framework of large-scale shell-model (LSSM) calculations.
  •  
4.
  • Petrache, C. M., et al. (author)
  • Multiple chiral bands in 137 Nd
  • 2020
  • In: European Physical Journal A. - : Springer Nature. - 1434-6001 .- 1434-601X. ; 56:8
  • Journal article (peer-reviewed)abstract
    • Two new bands have been identified in 137Nd from a high-statistics JUROGAM II gamma-ray spectroscopy experiment. Constrained density functional theory and particle rotor model calculations are used to assign configurations and investigate the band properties, which are well described and understood. It is demonstrated that these two new bands can be interpreted as chiral partners of previously known three-quasiparticle positive- and negative-parity bands. The newly observed chiral doublet bands in 137Nd represent an important support to the existence of multiple chiral bands in nuclei. The present results constitute the missing stone in the series of Nd nuclei showing multiple chiral bands, which becomes the most extended sequence of odd–even and even-even nuclei presenting multiple chiral bands in the Segré chart.
  •  
5.
  • Petrache, C. M., et al. (author)
  • Signatures of enhanced octupole correlations at high spin in Nd 136
  • 2020
  • In: Physical Review C. - : American Physical Society (APS). - 2469-9985 .- 2469-9993. ; 102:1
  • Journal article (peer-reviewed)abstract
    • Experimental signatures of moderately enhanced octupole correlations at high spin in Nd136 are indicated for the first time. The extracted dipole moments of two negative-parity bands are only two times smaller than those of the lanthanide nuclei with N≈90 which present well-established octupole correlations. Calculations using the cranked quasiparticle random phase approximation and a model of quadrupole-octupole rotations with octupole vibrations reveal the structure of the bands and the enhanced octupole correlations at high spin in Nd136.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view