SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Fang Y) srt2:(2020-2024)"

Search: WFRF:(Fang Y) > (2020-2024)

  • Result 1-10 of 135
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • 2021
  • swepub:Mat__t
  •  
3.
  •  
4.
  • Abbasi, R., et al. (author)
  • Search for 10-1000 GeV Neutrinos from Gamma-Ray Bursts with IceCube
  • 2024
  • In: Astrophysical Journal. - : Institute of Physics (IOP). - 1538-4357 .- 0004-637X. ; 964:2
  • Journal article (peer-reviewed)abstract
    • We present the results of a search for 10-1000 GeV neutrinos from 2268 gamma-ray bursts (GRBs) over 8 yr of IceCube-DeepCore data. This work probes burst physics below the photosphere where electromagnetic radiation cannot escape. Neutrinos of tens of giga electronvolts are predicted in sub-photospheric collision of free-streaming neutrons with bulk-jet protons. In a first analysis, we searched for the most significant neutrino-GRB coincidence using six overlapping time windows centered on the prompt phase of each GRB. In a second analysis, we conducted a search for a group of GRBs, each individually too weak to be detectable, but potentially significant when combined. No evidence of neutrino emission is found for either analysis. The most significant neutrino coincidence is for Fermi-GBM GRB bn 140807500, with a p-value of 0.097 corrected for all trials. The binomial test used to search for a group of GRBs had a p-value of 0.65 after all trial corrections. The binomial test found a group consisting only of GRB bn 140807500 and no additional GRBs. The neutrino limits of this work complement those obtained by IceCube at tera electronvolt to peta electronvolt energies. We compare our findings for the large set of GRBs as well as GRB 221009A to the sub-photospheric neutron-proton collision model and find that GRB 221009A provides the most constraining limit on baryon loading. For a jet Lorentz factor of 300 (800), the baryon loading on GRB 221009A is lower than 3.85 (2.13) at a 90% confidence level.
  •  
5.
  • Abbasi, R., et al. (author)
  • Search for decoherence from quantum gravity with atmospheric neutrinos
  • 2024
  • In: Nature Physics. - 1745-2481 .- 1745-2473. ; 20:6, s. 913-920
  • Journal article (peer-reviewed)abstract
    • Neutrino oscillations at the highest energies and longest baselines can be used to study the structure of spacetime and test the fundamental principles of quantum mechanics. If the metric of spacetime has a quantum mechanical description, its fluctuations at the Planck scale are expected to introduce non-unitary effects that are inconsistent with the standard unitary time evolution of quantum mechanics. Neutrinos interacting with such fluctuations would lose their quantum coherence, deviating from the expected oscillatory flavour composition at long distances and high energies. Here we use atmospheric neutrinos detected by the IceCube South Pole Neutrino Observatory in the energy range of 0.5-10.0 TeV to search for coherence loss in neutrino propagation. We find no evidence of anomalous neutrino decoherence and determine limits on neutrino-quantum gravity interactions. The constraint on the effective decoherence strength parameter within an energy-independent decoherence model improves on previous limits by a factor of 30. For decoherence effects scaling as E2, our limits are advanced by more than six orders of magnitude beyond past measurements compared with the state of the art. Interactions of atmospheric neutrinos with quantum-gravity-induced fluctuations of the metric of spacetime would lead to decoherence. The IceCube Collaboration constrains such interactions with atmospheric neutrinos.
  •  
6.
  • Abbasi, R., et al. (author)
  • Citizen science for IceCube: Name that Neutrino
  • 2024
  • In: European Physical Journal Plus. - 2190-5444. ; 139:6
  • Journal article (peer-reviewed)abstract
    • Name that Neutrino is a citizen science project where volunteers aid in classification of events for the IceCube Neutrino Observatory, an immense particle detector at the geographic South Pole. From March 2023 to September 2023, volunteers did classifications of videos produced from simulated data of both neutrino signal and background interactions. Name that Neutrino obtained more than 128,000 classifications by over 1800 registered volunteers that were compared to results obtained by a deep neural network machine-learning algorithm. Possible improvements for both Name that Neutrino and the deep neural network are discussed.
  •  
7.
  • Abbasi, R., et al. (author)
  • Measurement of atmospheric neutrino mixing with improved IceCube DeepCore calibration and data processing
  • 2023
  • In: Physical Review D. - 2470-0010 .- 2470-0029. ; 108:1
  • Journal article (peer-reviewed)abstract
    • We describe a new data sample of IceCube DeepCore and report on the latest measurement of atmospheric neutrino oscillations obtained with data recorded between 2011-2019. The sample includes significant improvements in data calibration, detector simulation, and data processing, and the analysis benefits from a sophisticated treatment of systematic uncertainties, with significantly greater level of detail since our last study. By measuring the relative fluxes of neutrino flavors as a function of their reconstructed energies and arrival directions we constrain the atmospheric neutrino mixing parameters to be sin2θ23=0.51±0.05 and Δm322=2.41±0.07×10-3 eV2, assuming a normal mass ordering. The errors include both statistical and systematic uncertainties. The resulting 40% reduction in the error of both parameters with respect to our previous result makes this the most precise measurement of oscillation parameters using atmospheric neutrinos. Our results are also compatible and complementary to those obtained using neutrino beams from accelerators, which are obtained at lower neutrino energies and are subject to different sources of uncertainties.
  •  
8.
  • Abbasi, R., et al. (author)
  • Observation of seasonal variations of the flux of high-energy atmospheric neutrinos with IceCube
  • 2023
  • In: European Physical Journal C. - : Springer. - 1434-6044 .- 1434-6052. ; 83:9
  • Journal article (peer-reviewed)abstract
    • Atmospheric muon neutrinos are produced by meson decays in cosmic-ray-induced air showers. The flux depends on meteorological quantities such as the air temperature, which affects the density of air. Competition between decay and re-interaction of those mesons in the first particle production generations gives rise to a higher neutrino flux when the air density in the stratosphere is lower, corresponding to a higher temperature. A measurement of a temperature dependence of the atmospheric νμ flux provides a novel method for constraining hadronic interaction models of air showers. It is particularly sensitive to the production of kaons. Studying this temperature dependence for the first time requires a large sample of high-energy neutrinos as well as a detailed understanding of atmospheric properties. We report the significant (>10σ) observation of a correlation between the rate of more than 260,000 neutrinos, detected by IceCube between 2012 and 2018, and atmospheric temperatures of the stratosphere, measured by the Atmospheric Infrared Sounder (AIRS) instrument aboard NASA’s AQUA satellite. For the observed 10 % seasonal change of effective atmospheric temperature we measure a 3.5(3) % change in the muon neutrino flux. This observed correlation deviates by about 2-3 standard deviations from the expected correlation of 4.3 % as obtained from theoretical predictions under the assumption of various hadronic interaction models.
  •  
9.
  • Abbasi, R., et al. (author)
  • Search for Continuous and Transient Neutrino Emission Associated with IceCube's Highest-energy Tracks: An 11 yr Analysis
  • 2024
  • In: Astrophysical Journal. - 1538-4357 .- 0004-637X. ; 964:1
  • Journal article (peer-reviewed)abstract
    • IceCube alert events are neutrinos with a moderate-to-high probability of having astrophysical origin. In this study, we analyze 11 yr of IceCube data and investigate 122 alert events and a selection of high-energy tracks detected between 2009 and the end of 2021. This high-energy event selection (alert events + high-energy tracks) has an average probability of >= 0.5 of being of astrophysical origin. We search for additional continuous and transient neutrino emission within the high-energy events' error regions. We find no evidence for significant continuous neutrino emission from any of the alert event directions. The only locally significant neutrino emission is the transient emission associated with the blazar TXS 0506+056, with a local significance of 3 sigma, which confirms previous IceCube studies. When correcting for 122 test positions, the global p-value is 0.156 and compatible with the background hypothesis. We constrain the total continuous flux emitted from all 122 test positions at 100 TeV to be below 1.2 x 10-15 (TeV cm2 s)-1 at 90% confidence assuming an E -2 spectrum. This corresponds to 4.5% of IceCube's astrophysical diffuse flux. Overall, we find no indication that alert events in general are linked to lower-energetic continuous or transient neutrino emission.
  •  
10.
  • Abbasi, R., et al. (author)
  • A Search for IceCube Sub-TeV Neutrinos Correlated with Gravitational-wave Events Detected By LIGO/Virgo
  • 2023
  • In: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 1538-4357 .- 0004-637X. ; 959:2
  • Journal article (peer-reviewed)abstract
    • The LIGO/Virgo collaboration published the catalogs GWTC-1, GWTC-2.1, and GWTC-3 containing candidate gravitational-wave (GW) events detected during its runs O1, O2, and O3. These GW events can be possible sites of neutrino emission. In this paper, we present a search for neutrino counterparts of 90 GW candidates using IceCube DeepCore, the low-energy infill array of the IceCube Neutrino Observatory. The search is conducted using an unbinned maximum likelihood method, within a time window of 1000 s, and uses the spatial and timing information from the GW events. The neutrinos used for the search have energies ranging from a few GeV to several tens of TeV. We do not find any significant emission of neutrinos, and place upper limits on the flux and the isotropic-equivalent energy emitted in low-energy neutrinos. We also conduct a binomial test to search for source populations potentially contributing to neutrino emission. We report a nondetection of a significant neutrino-source population with this test.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 135
Type of publication
journal article (126)
conference paper (7)
research review (1)
Type of content
peer-reviewed (124)
other academic/artistic (10)
Author/Editor
Song, H. (18)
Zhang, Z. (15)
Chen, C. (13)
Kumar, A. (13)
Wang, Y. (12)
Adams, J. (12)
show more...
Bai, X. (11)
Engel, R. (11)
Silva, M. (11)
Choi, S. (11)
Hu, Y. (11)
Chattopadhyay, S. (11)
Ackermann, M. (11)
Aguilar, J. A. (11)
Barwick, S. W. (11)
Bay, R. (11)
Beatty, J. J. (11)
BenZvi, S. (11)
Berley, D. (11)
Bernardini, E. (11)
Besson, D. Z. (11)
Blaufuss, E. (11)
Chirkin, D. (11)
Cowen, D. F. (11)
De Clercq, C. (11)
Desiati, P. (11)
de Vries, K. D. (11)
de Wasseige, G. (11)
DeYoung, T. (11)
Diaz-Velez, J. C. (11)
Ehrhardt, T. (11)
Fazely, A. R. (11)
Fedynitch, A. (11)
Sarkar, S. (11)
Andeen, K. (11)
Anton, G. (11)
Blot, S. (11)
Brostean-Kaiser, J. (11)
Busse, R. S. (11)
Conrad, J. M. (11)
Coppin, P. (11)
Correa, P. (11)
Dave, P. (11)
DeLaunay, J. J. (11)
Dujmovic, H. (11)
Eller, P. (11)
Franckowiak, A. (11)
Lu, L. (11)
Weaver, C. (11)
Collin, G. H. (11)
show less...
University
Karolinska Institutet (82)
Uppsala University (20)
University of Gothenburg (18)
Stockholm University (16)
Chalmers University of Technology (13)
Royal Institute of Technology (9)
show more...
Lund University (8)
Linköping University (4)
Mid Sweden University (4)
Högskolan Dalarna (3)
Swedish University of Agricultural Sciences (3)
Umeå University (2)
Karlstad University (2)
Luleå University of Technology (1)
Mälardalen University (1)
Swedish Museum of Natural History (1)
show less...
Language
English (135)
Research subject (UKÄ/SCB)
Natural sciences (35)
Medical and Health Sciences (24)
Engineering and Technology (5)
Social Sciences (4)
Agricultural Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view