SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Feautrier P.) srt2:(2019)"

Search: WFRF:(Feautrier P.) > (2019)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Lagrange, A. -M., et al. (author)
  • Post-conjunction detection of beta Pictoris b with VLT/SPHERE
  • 2019
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 621
  • Journal article (peer-reviewed)abstract
    • Context. With an orbital distance comparable to that of Saturn in the solar system, beta Pictoris b is the closest (semi-major axis similar or equal to 9 au) exoplanet that has been imaged to orbit a star. Thus it offers unique opportunities for detailed studies of its orbital, physical, and atmospheric properties, and of disk-planet interactions. With the exception of the discovery observations in 2003 with NaCo at the Very Large Telescope (VLT), all following astrometric measurements relative to beta Pictoris have been obtained in the southwestern part of the orbit, which severely limits the determination of the planet's orbital parameters.Aims. We aimed at further constraining beta Pictoris b orbital properties using more data, and, in particular, data taken in the northeastern part of the orbit.Methods. We used SPHERE at the VLT to precisely monitor the orbital motion of beta beta Pictoris b since first light of the instrument in 2014.Results. We were able to monitor the planet until November 2016, when its angular separation became too small (125 mas, i.e., 1.6 au) and prevented further detection. We redetected beta Pictoris b on the northeast side of the disk at a separation of 139 mas and a PA of 30 degrees in September 2018. The planetary orbit is now well constrained. With a semi-major axis (sma) of a = 9.0 +/- 0.5 au (1 sigma), it definitely excludes previously reported possible long orbital periods, and excludes beta Pictoris b as the origin of photometric variations that took place in 1981. We also refine the eccentricity and inclination of the planet. From an instrumental point of view, these data demonstrate that it is possible to detect, if they exist, young massive Jupiters that orbit at less than 2 au from a star that is 20 pc away.
  •  
2.
  • Cugno, G., et al. (author)
  • A search for accreting young companions embedded in circumstellar disks High-contrast H alpha imaging with VLT/SPHERE
  • 2019
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 622
  • Journal article (peer-reviewed)abstract
    • Context. In recent years, our understanding of giant planet formation progressed substantially. There have even been detections of a few young protoplanet candidates still embedded in the circumstellar disks of their host stars. The exact physics that describes the accretion of material from the circumstellar disk onto the suspected circumplanetary disk and eventually onto the young, forming planet is still an open question.Aims. We seek to detect and quantify observables related to accretion processes occurring locally in circumstellar disks, which could be attributed to young forming planets. We focus on objects known to host protoplanet candidates and/or disk structures thought to be the result of interactions with planets.Methods. We analyzed observations of six young stars (age 3.5-10 Myr) and their surrounding environments with the SPHERE/ZIMPOL instrument on the Very Large Telescope (VLT) in the H alpha filter (656 nm) and a nearby continuum filter (644.9 nm). We applied several point spread function (PSF) subtraction techniques to reach the highest possible contrast near the primary star, specifically investigating regions where forming companions were claimed or have been suggested based on observed disk morphology.Results. We redetect the known accreting M-star companion HD142527 B with the highest published signal to noise to date in both H alpha and the continuum. We derive new astrometry (r = 62.8(-2.7)(+2.1)mas and PA = (98.7 +/- 1.8)degrees) and photometry (Delta N_Ha = 6.3-(+0.2)(0.3) mag, Delta B_Ha = 6.7 +/- 0.2 mag and Delta Cnt_Ha= 7.3(-0.2)(+0.3) mag) for the companion in agreement with previous studies, and estimate its mass accretion rate (M approximate to 1-2 x 10(-10) M-circle dot yr(-1)). A faint point-like source around HD135344 B (SA0206462) is also investigated, but a second deeper observation is required to reveal its nature. No other companions are detected. In the framework of our assumptions we estimate detection limits at the locations of companion candidates around HD100546, HD169142, and MWC 758 and calculate that processes involving Ha fluxes larger than similar to 8 x 10(-14)-10(-15) erg s(-1) cm(-2) (M > 10(-10)-10(-12) M-circle dot yr(-1)) can be excluded. Furthermore, flux upper limits of similar to 10(-14)-10(-15)erg s(-1) cm(-2) (M < 10(-11) -10(-12)M(circle dot )yr(-1)) are estimated within the gaps identified in the disks surrounding HD135344 B and TW Hya. The derived luminosity limits exclude H alpha signatures at levels similar to those previously detected for the accreting planet candidate LkCa15 b.
  •  
3.
  • Olofsson, J., et al. (author)
  • Dust production in the debris disk around HR4796 A
  • 2019
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 630
  • Journal article (peer-reviewed)abstract
    • Context. Debris disks are the natural by-products of the planet formation process. Scattered or polarized light observations are mostly sensitive to small dust grains that are released from the grinding down of bigger planetesimals.Aims. High angular resolution observations at optical wavelengths can provide key constraints on the radial and azimuthal distribution of the small dust grains. These constraints can help us better understand where most of the dust grains are released upon collisions.Methods. We present SPHERE/ZIMPOL observations of the debris disk around HR4796A, and we modeled the radial profiles along several azimuthal angles of the disk with a code that accounts for the effect of stellar radiation pressure. This enabled us to derive an appropriate description for the radial and azimuthal distribution of the small dust grains.Results. Even though we only modeled the radial profiles along, or close to, the semi-major axis of the disk, our best-fit model is not only in good agreement with our observations but also with previously published datasets (from near-infrared to sub-mm wavelengths). We find that the reference radius is located at 76.4 +/- 0.4 au, and the disk has an eccentricity of 0.076(-0.010)(+0.016) with the pericenter located on the front side of the disk (north of the star). We find that small dust grains must be preferentially released near the pericenter to explain the observed brightness asymmetry.Conclusions. Even though parent bodies spend more time near the apocenter, the brightness asymmetry implies that collisions happen more frequently near the pericenter of the disk. Our model can successfully reproduce the shape of the outer edge of the disk without requiring an outer planet shaping the debris disk. With a simple treatment for the effect of the radiation pressure, we conclude that the parent planetesimals are located in a narrow ring of about 3.6 au in width.
  •  
4.
  • Claudi, R., et al. (author)
  • SPHERE dynamical and spectroscopic characterization of HD142527B
  • 2019
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 622
  • Journal article (peer-reviewed)abstract
    • Aims. HD142527 is one of the most frequently studied Herbig Ae/Be stars with a transitional disk that hosts a large cavity that is up to about 100 au in radius. For this reason, it has been included in the guaranteed time observation (GTO) SpHere INfrared survey for Exoplanets (SHINE) as part of the Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) at the Very Large Telescope (VLT) in order to search for low-mass companions that might explain the presence of the gap. SHINE is a large survey within about 600 young nearby stars are observed with SPHERE with the aim to constrain the occurrence and orbital properties of the giant planet population at large (>5 au) orbital separation around young stars. Methods. We used the IRDIFS observing mode of SPHERE (IRDIS short for infrared dual imaging and spectrograph plus IFS or integral field spectrograph) without any coronagraph in order to search for and characterize companions as close as 30 mas of the star. Furthermore, we present the first observations that ever used the sparse aperture mask (SAM) for SPHERE both in IRDIFS and IRDIFS_EXT modes. All the data were reduced using the dedicated SPHERE pipeline and dedicated algorithms that make use of the principal component analysis (PCA) and reference differential imaging (RDI) techniques. Results. We detect the accreting low-mass companion HD142527B at a separation of 73 mas (11.4 au) from the star. No other companions with mass greater than 10 M-J are visible in the field of view of IFS (similar to 100 au centered on the star) or in the IRDIS field of view (similar to 400 au centered on the star). Measurements from IFS, SAM IFS, and IRDIS suggest an M6 spectral type for HD142527B, with an uncertainty of one spectral subtype, compatible with an object of M = 0.11 +/- 0.06 M-circle dot and R = 0.15 +/- 0.07 R-circle dot. The determination of the mass remains a challenge using contemporary evolutionary models, as they do not account for the energy input due to accretion from infalling material. We consider that the spectral type of the secondary may also be earlier than the type we derived from IFS spectra. From dynamical considerations, we further constrain the mass to 0.26(-0.14)(+0.16) , which is consistent with both our spectroscopic analysis and the values reported in the literature. Following previous methods, the lower and upper dynamical mass values correspond to a spectral type between M2.5 and M5.5 for the companion. By fitting the astrometric points, we find the following orbital parameters: a period of P = 35 137 yr; an inclination of i = 121 130 degrees, a value of Omega = 124 135 degrees for the longitude of node, and an 68% confidence interval of similar to 18-57 au for the separation at periapsis. Eccentricity and time at periapsis passage exhibit two groups of values: similar to 0.2-0.45 and similar to 0.45-0.7 for e, and similar to 2015-2020 and similar to 2020-2022 for T-0. While these orbital parameters might at first suggest that HD142527B is not the companion responsible for the outer disk truncation, a previous hydrodynamical analysis of this system showed that they are compatible with a companion that is able to produce the large cavity and other observed features.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view