SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fiedler Wolfgang) srt2:(2015-2019)"

Sökning: WFRF:(Fiedler Wolfgang) > (2015-2019)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bengtsson, Daniel, et al. (författare)
  • Does influenza A virus infection affect movement behaviour during stopover in its wild reservoir host?
  • 2016
  • Ingår i: The Royal Society. - : The Royal Society. - 2054-5703. ; 3:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The last decade has seen a surge in research on avian influenza A viruses (IAVs), in part fuelled by the emergence, spread and potential zoonotic importance of highly pathogenic virus subtypes. The mallard (Anas platyrhynchos) is the most numerous and widespread dabbling duck in the world, and one of the most important natural hosts for studying IAV transmission dynamics. In order to predict the likelihood of IAV transmission between individual ducks and to other hosts, as well as between geographical regions, it is important to understand how IAV infection affects the host. In this study, we analysed the movements of 40 mallards equipped with GPS transmitters and three-dimensional accelerometers, of which 20 were naturally infected with low pathogenic avian influenza virus (LPAIV), at a major stopover site in the Northwest European flyway. Movements differed substantially between day and night, as well as between mallards returning to the capture site and those feeding in natural habitats. However, movement patterns did not differ between LPAIV infected and uninfected birds. Hence, LPAIV infection probably does not affect mallard movements during stopover, with high possibility of virus spread along the migration route as a consequence.
  •  
2.
  • Kleyheeg, Erik, et al. (författare)
  • A Comprehensive Model for the Quantitative Estimation of Seed Dispersal by Migratory Mallards
  • 2019
  • Ingår i: Frontiers in Ecology and Evolution. - : Frontiers Media S.A.. - 2296-701X. ; 7, s. 1-14
  • Tidskriftsartikel (refereegranskat)abstract
    • Long-distance seed dispersal is an important ecosystem service provided by migratory animals. Plants inhabiting discrete habitats, like lakes and wetlands, experience dispersal limitation, and rely heavily on zoochory for their spatial population dynamics. Granivorous waterbirds may disperse viable seeds of wetland plants over long distances during migration. The limited knowledge of waterbird migration has long hampered the evaluation of the importance of waterbirds in seed dispersal, requiring key metrics such as realistic dispersal distances. Using recent GPS tracking of mallards during spring migration, we built a mechanistic seed dispersal model to estimate realistic dispersal distances. Mallards are abundant, partially migratory ducks known to consume seeds of >300 European plant species. Based on the tracking data, we informed a mallard migration simulator to obtain a probabilistic spring migration model for the mallard population wintering at Lake Constance in Southern Germany. We combined the spring migration model with seed retention curves to develop seed dispersal kernels. We also assessed the effects of pre-migratory fasting and the availability of suitable deposition habitats for aquatic and wetland plants. Our results show that mallards at Lake Constance can disperse seeds in the northeastern direction over median distances of 293 and 413 km for seeds with short and long retention times, respectively, assuming a departure immediately after foraging. Pre-migratory fasting strongly affected the dispersal potential, with only 1-7% of ingested seeds left for dispersal after fasting for 12 h. Availability of a suitable deposition habitat was generally <5% along the migratory flyway. The high probability of seed deposition in a freshwater habitat during the first stopover, after the mallards completed the first migratory flight, makes successful dispersal most likely to happen at 204-322 km from Lake Constance. We concluded that the directed long-distance dispersal of plant seeds, realized by mallards on spring migration, may contribute significantly to large scale spatial plant population dynamics, including range expansion in response to shifting temperature and rainfall patterns under global warming. Our dispersal model is the first to incorporate detailed behavior of migratory waterbirds and can be readily adjusted to include other vector species when tracking data are available.
  •  
3.
  • Mauritsen, Thorsten, et al. (författare)
  • Developments in the MPI-M Earth System Model version 1.2 (MPI-ESM1.2) and Its Response to Increasing CO2
  • 2019
  • Ingår i: Journal of Advances in Modeling Earth Systems. - 1942-2466. ; 11:4, s. 998-1038
  • Tidskriftsartikel (refereegranskat)abstract
    • A new release of the Max Planck Institute for Meteorology Earth System Model version 1.2 (MPI-ESM1.2) is presented. The development focused on correcting errors in and improving the physical processes representation, as well as improving the computational performance, versatility, and overall user friendliness. In addition to new radiation and aerosol parameterizations of the atmosphere, several relatively large, but partly compensating, coding errors in the model's cloud, convection, and turbulence parameterizations were corrected. The representation of land processes was refined by introducing a multilayer soil hydrology scheme, extending the land biogeochemistry to include the nitrogen cycle, replacing the soil and litter decomposition model and improving the representation of wildfires. The ocean biogeochemistry now represents cyanobacteria prognostically in order to capture the response of nitrogen fixation to changing climate conditions and further includes improved detritus settling and numerous other refinements. As something new, in addition to limiting drift and minimizing certain biases, the instrumental record warming was explicitly taken into account during the tuning process. To this end, a very high climate sensitivity of around 7 K caused by low-level clouds in the tropics as found in an intermediate model version was addressed, as it was not deemed possible to match observed warming otherwise. As a result, the model has a climate sensitivity to a doubling of CO2 over preindustrial conditions of 2.77 K, maintaining the previously identified highly nonlinear global mean response to increasing CO2 forcing, which nonetheless can be represented by a simple two-layer model. 
  •  
4.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy