SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Fjellgaard Mikalsen Ragni) srt2:(2020)"

Search: WFRF:(Fjellgaard Mikalsen Ragni) > (2020)

  • Result 1-9 of 9
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Fjellgaard Mikalsen, Ragni, et al. (author)
  • Efficient emergency responses to vehicle collision, earthquake, snowfall, and flooding on highways and bridges : A review
  • 2020
  • In: Journal of Emergency Management. - : NLM (Medline). - 1543-5865. ; 18:1, s. 51-72
  • Journal article (peer-reviewed)abstract
    • This review article analyzes factors affecting emergency response to hazardous events on highways and their bridges, with focus on man-made and natural scenarios: heavy vehicle collision with a bridge, earthquake, heavy snowfall, and flooding. For each disaster scenario, selected historical events were compiled to determine influential factors and success criteria for efficient emergency response, both related to organizational and technical measures. This study constituted a part of a resilience management process, recently developed and demonstrated within the European Union (EU)-funded H2020 project IMPROVER and can be a useful approach in aiding operators of transportation infrastructure to improve their resilience to emergency incidents.
  •  
2.
  • Fjellgaard Mikalsen, Ragni, et al. (author)
  • Fra bensinstasjon til energistasjon : Endring av brann- og eksplosjonssikkerhet
  • 2020
  • Reports (other academic/artistic)abstract
    • From petrol station to multifuel energy station: Changes in fire and explosion safetyA multifuel energy station is a publicly available station which offers refueling of traditional fossil fuels in combination with one or more alternative energy carriers, such as hydrogen or electric power to electric vehicles. The goal of this study is to survey how the transition from traditional petrol stations to multifuel energy stations affects the fire and explosion risk.Relevant research publications, regulations and guidelines have been studied. Four interviews with relevant stakeholders have been conducted, in addition to correspondence with other stakeholders. The collected information has been used to evaluate and provide a general overview of fire and explosion risk at multifuel energy stations. The scope of the project is limited, and some types of fueling facilities (in conjunction with supermarkets, bus- and industrial facilities), some types of safety challenges (intended acts of sabotage and/or terror), as well as transport of fuel to and from the station, are not included.Availability of different types of fuel in Norway was investigated and three types were selected to be in focus: power for electric vehicles, gaseous hydrogen, as well as hydrogen and methane in liquid form. The selection was based on expected future use, as well as compatibility with the goal of the National Transport Plan that all new vehicles sold from 2025 should be zero emission vehicles. Currently, the category zero emission vehicle includes only electric- and hydrogen vehicles.In facilities that handle flammable, self-reactive, pressurized and explosive substances there is a risk of unwanted incidents. When facilities with hazardous substances comply with current regulations, the risk associated with handling hazardous substances is considered not to be significant compared to other risks in society. When new energy carriers are added, it is central to understand how the transition from a traditional petrol station to a multifuel energy station will change the fire and explosion risk. Factors that will have an impact include: number and type of ignition sources, number of passenger vehicles and heavy transport vehicles at the station, amount of flammable substances, duration of stay for visitors, complexity of the facility, size of the safety distances, fire service’s extinguishing efforts, environmental impact, maintenance need etc. In addition, each energy carrier entails unique scenarios.By introducing charging stations at multifuel energy stations, additional ignition sources are introduced compared to a traditional petrol station, since the charger itself can be considered as a potential ignition source. The charger and connected car must be placed outside the Ex-zone in accordance with NEK400 (processed Norwegian edition of IEC 60364 series, the CENELEC HD 60364 series and some complementary national standards), in such a way that ignition of potential leaks from fossil fuels or other fuels under normal operation conditions is considered unlikely to occur. A potential danger in the use of rapid charging is electric arcing, which can arise due to poor connections and high electric effect. Electric arcs produce local hot spots, which in turn can contribute to fire ignition. The danger of electric arcs is reduced by, among others, communication between the vehicle and charger, which assures that no charging is taking place before establishing good contact between the two. The communication also assures that it is not possible to drive off with the charger still connected. There are requirements for weekly inspections of the charger and the charging cable, which will contribute to quick discovery and subsequent repair of faults and mechanical wear. Other safety measures to reduce risk include collision protection of the charger, and emergency stop switches that cut the power delivery to all chargers. There is a potential danger of personal injury by electric shock, but this is considered most relevant during installation of the charger and can be reduced to an acceptable level by utilizing certified personnel and limited access for unauthorized personnel. For risk assessments and risk evaluations of each individual facility with charging stations, it is important to take into account the added ignition sources, as well as the other mentioned factors, in addition to facility specific factors.Gaseous hydrogen has different characteristics than conventional fuels at a petrol station, which affect the risk (frequency and consequence). Gaseous hydrogen is flammable, burns quickly and may explode given the right conditions. Furthermore, the gas is stored in high pressure tanks, producing high mechanical rupture energy, and the transport capacity of gaseous hydrogen leads to an increased number of trucks delivering hydrogen, compared with fossil fuels. On the other hand, gaseous hydrogen is light weight and easily rises upwards and dilute. In the case of a fire the flame has low radiant heat and heating outside the flame itself is limited. Important safety measures are open facilities, safe connections for high pressure fueling, and facilitate for pressure relief in a safe direction by the use of valves and sectioning, so that the gas is led upwards in a safe direction in case of a leakage. For risk assessments and risk evaluations of each individual facility with gaseous hydrogen, it is important to take into account the explosion hazard, as well as the other mentioned factors, in addition to facility specific factors.Liquid hydrogen (LH2) and liquid methane (LNG, LBG) are stored at very low temperatures and at a relatively low pressure. Leakages may result in cryogenic (very cold) leakages which may lead to personal injuries and embrittlement of materials such as steels. Critical installations which may be exposed to cryogenic leakages must be able to withstand these temperatures. In addition, physical boundaries to limit uncontrolled spreading of leakages should be established. Evaporation from tanks must be ventilated through safety valves. During a fire, the safety valves must not be drenched in extinguishing water, as they may freeze and seal. Leakages of liquid methane and liquid hydrogen will evaporate and form flammable and explosive gas clouds. Liquid hydrogen is kept at such a low temperature that uninsulated surfaces may cause air to condense and form liquid oxygen, which may give an intense fire or explosion when reacting with organic material. For risk assessments and risk evaluations of each individual facility with liquid hydrogen and liquid methane, it is important to take into account the cryogenic temperatures during storage and that it must be possible to ventilate off any gas formed by evaporation from a liquid leakage, as well as the other mentioned factors, in addition to facility specific factors.For the combination of more than one alternative energy carrier combined with fuels of a conventional petrol station, two areas of challenges have been identified: area challenges and cascade effects. Area challenges are due to the fact that risks to the surroundings must be evaluated based on all activity in the facility. When increasing the number of fueling systems within an area, the frequency of unwanted incidents at a given point in the facility is summarized (simply put). If two energy carriers are placed in too close proximity to each other, the risk can be disproportionately high. During construction, the fueling systems must be placed with sufficient space between them. In densely populated areas, shortage of space may limit the development. Cascade effects is a chain of events which starts small and grows larger, here due to an incident involving one energy carrier spreading to another. This may occur due to ignited liquid leakages which may flow to below a gas tank, or by explosion- or fire related damages to nearby installations due to shock waves, flying debris or flames. Good technical and organizational measures are important, such as sufficient training of personnel, follow-up and facility inspections, especially during start-up after installing a new energy carrier. The transition from a traditional petrol station to a multifuel energy station could not only give negative cascade effects, since sectionalizing of energy carriers, with lower storage volume per energy carrier, as well as physical separation between these, may give a reduction in the potential extent of damage of each facility. Apart from area challenges and cascade effects no other combination challenges, such a chemical interaction challenges, have been identified to potentially affect the fire and explosion risk.For future work it will be important to keep an eye on the development, nationally and internationally, since it is still too early to predict which energy carriers that will be most utilized in the future. If electric heavy transport (larger batteries and the need for fast charging with higher effect) become more common, it will be necessary to develop a plan and evaluate the risks of charging these at multifuel energy stations. For hydrogen there is a need for more knowledge on how the heat of a jet fire (ignited, pressurized leakage) affects impinged objects. There is also a general need for experimental and numerical research on liquid hydrogen and methane due to many knowledge gaps on the topic. During operation of the facilities and through potential unwanted incidents, new knowledge will be gained, and this knowledge must be utilized in order to update recommendations linked to the risk of fire and explosion in multifuel energy stations.
  •  
3.
  •  
4.
  • Meraner, Christoph, et al. (author)
  • Brannsikkerhet i jernbanetunnel : Dimensjonerende brannscenario og forventninger til redningsinnsats
  • 2020
  • Reports (other academic/artistic)abstract
    • Denne studien belyser ulike aspekter ved personsikkerheten ved brann i tunnel og svarer ut konkrete spørsmål omkring temaet.Oppdragsgiver er Bane NOR. Prosjektet har fått innspill fra en arbeidsgruppe som er koordinert og ledet av hhv. KS Bedrift og Bane NOR – med fagressurser fra Vestfold Interkommunale Brannvesen IKS (VIB), Bergen brannvesen (BB), Oslo brann- og redningsetat (OBRE), Bane NOR, operatørselskaper (Vy og Flytoget), Direktoratet for samfunnssikkerhet og beredskap (DSB) og Statens havarikommisjon for transport (SHT).Rapporten er delt inn i to hoveddeler. Del 1 omhandler kartlegging av relevante forskningsprosjekt, dimensjonerende brannscenarier og røykkontroll, se sammendrag og forslag til veien videre i underkapittel 3.5. Del 2 omhandler kartlegging av kunnskap om menneskelig atferd i forbindelse med tunnelbrann, se sammendrag og forslag til veien videre i underkapittel 4.5. Denne delen er utarbeidet av Lunds Tekniska Högskola og WSP Sverige, og er følgelig på svensk.
  •  
5.
  • Piechnik, Kira, et al. (author)
  • Fire without flames : 13 amazing facts aboutsmouldering fires
  • 2020
  • Reports (other academic/artistic)abstract
    • This FRIC report presents a popular scientific overview of 13 facts about smouldering fires. Theaim is that the reader will get an insight into why these fires fascinate, their challenges andconsequences, and how to extinguish them. The 13 facts are on the following topics:1. Fragmented knowledge2. Nicknames3. Peat and coal areas - a worldwide challenge4. Peat fires in Indonesia5. Burning Mountain of Australia6. Wood pellets silo fires7. Fire deaths caused by smouldering fires8. Coal fires in China9. World Trade Center10. Smouldering in space11. Zombie Fires12. Titanic13. Fighting flameless firesThe report is complemented with an interactive, online presentation which may be found here:https://prezi.com/view/yVFHODruMbxK3e9yMLkF/
  •  
6.
  • Rebaque, Virginia, et al. (author)
  • Experimental study of smouldering in wood pellets with and without air draft
  • 2020
  • In: Fuel. - : Elsevier Ltd. - 0016-2361 .- 1873-7153. ; 264
  • Journal article (peer-reviewed)abstract
    • Dry wood pellets (diameter 8 mm) of mixed Norwegian spruce and pine were tested in samples of 1.25 kg (1.7 l) in configurations with and without air draft from below. The pellets were placed in a vertical 15 cm diameter cylinder on top of a hot plate. Air draft inlet, when allowed, came through narrow openings in the cylinder bottom periphery. The bulk void of 36% formed channels for gas flows within the pellets bed. Initially, the samples were heated externally from below for 6 h. Time series of distributed temperatures were recorded, together with values of the mass. Smouldering with air draft was observed with two distinct behaviours: Type 1, where the sample after the period of external heating cooled down for several hours, and then increased in temperature to intense smouldering, and Type 2, where the sample went into intense smouldering before the end of external heating. Without draft airflow from below, the sample cooled down after external heating, before developing into intense smouldering about 20 h later. In all cases, the intense period lasted for 2 h. Typical temperatures were in the range 300–450 °C, while higher temperatures occurred in the intense period. Draft flow caused fast oxidation spreading, while slow without draft. Indications of oxidation spreading as a distriäbuted reaction were seen. Circulating air motions in the irregular void between individual pellets is discussed as an explanation for the behaviour. Uneven access to oxygen, with possibilities of locally excess air, can explain the peak temperatures observed. © 2019 The Author(s)
  •  
7.
  • Sesseng, Christian, et al. (author)
  • Effect of particle granularity on smoldering fire in wood chips made from wood waste : An experimental study
  • 2020
  • In: Fire and Materials. - : John Wiley and Sons Ltd. - 0308-0501 .- 1099-1018. ; 44:4, s. 540-556
  • Journal article (peer-reviewed)abstract
    • Fires in wood waste storages cause financial losses, are difficult to extinguish, and emit large amounts of fire effluents. The mechanisms related to fires in wood chip piles are not well elucidated. To find suitable preventive measures for handling such fires in wood waste, a better understanding of the physical properties of wood waste is needed. The present study investigates how granularity affects mechanisms of smoldering fire and transition to flaming in wood chip piles. Eighteen experiments with samples inside a top-ventilated, vertical cylinder were conducted. Heating from underneath the cylinder induced auto-ignition and smoldering fire, and temperatures and mass loss of the sample were measured. The results showed that granularity significantly affects the smoldering fire dynamics. Material containing larger wood chips (length 4-100 mm) demonstrated more irregular temperature development, higher temperatures, faster combustion, and higher mass losses than material of smaller wood chips (length <4 mm). The larger wood chips also underwent transition to flaming fires. Flaming fires were not observed for small wood chips, which instead demonstrated prolonged and steady smoldering propagation. The differences are assumed to be partly due to the different bulk densities of the samples of large and small wood chips affecting the ventilation conditions. Increased knowledge about these combustion processes and transition to flaming is vital to develop risk-reducing measures when storing wood chips made from wood waste in piles.
  •  
8.
  • Storesund, Karolina, et al. (author)
  • Evaluation of fire in Stavanger airport car park 7 January 2020
  • 2020
  • Reports (other academic/artistic)abstract
    • This report is commissioned by the Norwegian Directorate for Civil Protection (DSB) and the Norwegian Building Authority (DiBK). RISE Fire Research has been commissioned to evaluate the fire in the multi-storey car park at Stavanger airport Sola on the 7th January 2020. The aim is to promote learning points for public benefit with regard to the extent of the fire, regulations, extinguishing efforts, structural design, effects on the environment and the role of electric vehicles in the fire development. Information has been collected via interviews, on-site inspection, contact with stakeholders, review of relevant regulations, documents and literature. Design of the building: Active, passive and organizational fire protection measures have been evaluated. In our opinion, the multi-storey car park should have been placed in Fire class 4 (“brannklasse 4”), since it was adjacent to important infrastructure for society. The fire design documentation for building stages B and C has shortcomings in terms of assessment of sectioning, installation of fire alarm or extinguishing systems, as well as assessment of the fire resistance of the loadbearing structure. There are a number of inconsistencies that indicate that the fire risk has not been fully mapped and assessed in connection with the preparation of the fire designs. Regulations: No deficiencies were found in the regulations relevant to this incident. Small adjustments in wording between different editions of regulations (e.g. guidance for technical regulations) can have a major impact on how the regulations should be interpreted. It is important that the authorities highlight such changes and that the fire consultant who develop a fire engineering concept avoid uncritical reuse of content from older fire concepts. Handling of the incident: How the fire service and other parties handled the incident during the emergency phase has been evaluated, and learning points have been identified for the following areas (details in section 7.3): The basis for creating national learning after major events, action plans, exercise and training, collaboration and common situational understanding, management tools, call-out, information sharing and initial situation report, immediate measures, the goal of the effort and tactical plan, organization of the site, communication and collaboration, logistics and depots, as well as handling uncertainties and follow-up. Electric vehicles: Water analyses of selected metals relevant for batteries in electric vehicles did not show any lithium, and only low concentrations of cobalt. This indicates that batteries in electric vehicles did not contribute to pollution of nearby water resources. Observations during the fire indicate that electric vehicles did not contribute to the fire development beyond what is expected from conventional vehicles. Further technical studies of the batteries from the burned electric and hybrid vehicles are necessary to evaluate whether batteries from electric vehicles were involved in the fire.Environmental impact, extinguishing foam: During the incident, a lot of extinguishing foam was used, but this led to a limited environmental impact. The extinguishing foam was found not to add substantial amounts of PFAS during the extinguishing efforts. Analyses conducted by COWI still show PFAS content in all water samples, which is linked to previous emissions. Oxygen depletion as a result of release of extinguishing foam is considered to have led to local toxic effects on the aquatic environment, but not a general negative effect on the sea life in Solavika. There is a need for stronger awareness of, and focus on the use of, extinguishing foams and logging of the amount of foam used. Here one may learn from Sweden. Environmental impact, smoke: Smoke from the fire was mainly not driven in the direction of the terminal buildings, and during the first period only in the direction of areas with low population density. The fire smoke affected the evacuation of a nearby hotel. Eventually, the wind turned in the direction of areas with higher population density, and a population warning was sent out. Based on few health consultations (11 at the emergency room and 2 in hospital), as well as the municipality’s assessment of the incident, it is assumed that the fire smoke had limited health consequences for neighbours. The smoke content has not been analyzed. Finally; learning points from evaluation of the fire are relevant for many stakeholders, such as the fire service, authorities, construction design, for the owner and for research in the field.
  •  
9.
  • Storesund, Karolina, et al. (author)
  • Evaluering av brann i parkeringshus på Stavanger lufthavn Sola 7. januar 2020
  • 2020
  • Reports (other academic/artistic)abstract
    • This report is commissioned by the Norwegian Directorate for Civil Protection (DSB) and theNorwegian Building Authority (DiBK). RISE Fire Research has been commissioned to evaluatethe fire in the multi-storey car park at Stavanger airport Sola on the 7th January 2020. The aim isto promote learning points for public benefit with regard to the extent of the fire, regulations,extinguishing efforts, structural design, effects on the environment and the role of electric vehiclesin the fire development. Information has been collected via interviews, on-site inspection, contactwith stakeholders, review of relevant regulations, documents and literature.Design of the building: Active, passive and organizational fire protection measures have beenevaluated. In our opinion, the multi-storey car park should have been placed in Fire class 4(“brannklasse 4”), since it was adjacent to important infrastructure for society. The fire designdocumentation for building stages B and C has shortcomings in terms of assessment of sectioning,installation of fire alarm or extinguishing systems, as well as assessment of the fire resistance ofthe loadbearing structure. There are a number of inconsistencies that indicate that the fire risk hasnot been fully mapped and assessed in connection with the preparation of the fire concepts.Regulations: No deficiencies were found in the regulations relevant to this incident. Smalladjustments in wording between different editions of regulations (e.g. guidance for technicalregulations) can have a major impact on how the regulations should be interpreted. It is importantthat the authorities highlight such changes and that the fire consultant who develop a fireengineering concept avoid uncritical reuse of content from older fire concepts.Handling of the incident: How the fire service and other parties handled the incident during theemergency phase has been evaluated, and learning points have been identified for the followingareas (details in section 7.3): The basis for creating national learning after major events, actionplans, exercise and training, collaboration and common situational understanding, managementtools, call-out, information sharing and initial situation report, immediate measures, the goal ofthe effort and tactical plan, organization of the site, communication and collaboration, logisticsand depots, as well as handling uncertainties and follow-up.Electric vehicles: Water analyses of selected metals relevant for batteries in electric vehicles didnot show any lithium, and only low concentrations of cobalt. This indicates that batteries inelectric vehicles did not contribute to pollution of nearby water resources. Observations duringthe fire indicate that electric vehicles did not contribute to the fire development beyond what isexpected from conventional vehicles. Further technical studies of the batteries from the burnedelectric and hybrid vehicles are necessary to evaluate whether batteries from electric vehicleswere involved in the fire.Environmental impact, extinguishing foam: During the incident, a lot of extinguishing foamwas used, but this led to a limited environmental impact. The extinguishing foam was found notto add substantial amounts of PFAS during the extinguishing efforts. Analyses conducted byCOWI still show PFAS content in all water samples, which is linked to previous emissions.Oxygen depletion as a result of release of extinguishing foam is considered to have led to local toxic effects on the aquatic environment, but not a general negative effect on the sea life inSolavika. There is a need for stronger awareness of, and focus on the use of, extinguishing foamsand logging of the amount of foam used. Here one may learn from Sweden.Environmental impact, smoke: Smoke from the fire was mainly not driven in the direction ofthe terminal buildings, and during the first period only in the direction of areas with lowpopulation density. The fire smoke affected the evacuation of a nearby hotel. Eventually, the windturned in the direction of areas with higher population density, and a population warning was sentout. Based on few health consultations (11 at the emergency room and 2 in hospital), as well asthe municipality’s assessment of the incident, it is assumed that the fire smoke had limited healthconsequences for neighbours. The smoke content has not been analyzed.Finally; learning points from evaluation of the fire are relevant for many stakeholders, such as thefire service, authorities, construction design, for the owner and for research in the field.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-9 of 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view