SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Flux G.) "

Search: WFRF:(Flux G.)

  • Result 1-10 of 10
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Chiesa, C., et al. (author)
  • EANM dosimetry committee series on standard operational procedures: a unified methodology for Tc-99m-MAA pre- and Y-90 peri-therapy dosimetry in liver radioembolization with Y-90 microspheres
  • 2021
  • In: Ejnmmi Physics. - : Springer Science and Business Media LLC. - 2197-7364. ; 8:1
  • Journal article (peer-reviewed)abstract
    • The aim of this standard operational procedure is to standardize the methodology employed for the evaluation of pre- and post-treatment absorbed dose calculations in Y-90 microsphere liver radioembolization. Basic assumptions include the permanent trapping of microspheres, the local energy deposition method for voxel dosimetry, and the patient-relative calibration method for activity quantification.The identity of Tc-99m albumin macro-aggregates (MAA) and Y-90 microsphere biodistribution is also assumed. The large observed discrepancies in some patients between Tc-99m-MAA predictions and actual Y-90 microsphere distributions for lesions is discussed. Absorbed dose predictions to whole non-tumoural liver are considered more reliable and the basic predictors of toxicity. Treatment planning based on mean absorbed dose delivered to the whole non-tumoural liver is advised, except in super-selective treatments. Given the potential mismatch between MAA simulation and actual therapy, absorbed doses should be calculated both pre- and post-therapy. Distinct evaluation between target tumours and non-tumoural tissue, including lungs in cases of lung shunt, are vital for proper optimization of therapy. Dosimetry should be performed first according to a mean absorbed dose approach, with an optional, but important, voxel level evaluation. Fully corrected Tc-99m-MAA Single Photon Emission Computed Tomography (SPECT)/computed tomography (CT) and Y-90 TOF PET/CT are regarded as optimal acquisition methodologies, but, for institutes where SPECT/CT is not available, non-attenuation corrected Tc-99m-MAA SPECT may be used. This offers better planning quality than non dosimetric methods such as Body Surface Area (BSA) or mono-compartmental dosimetry. Quantitative Y-90 bremsstrahlung SPECT can be used if dedicated correction methods are available. The proposed methodology is feasible with standard camera software and a spreadsheet. Available commercial or free software can help facilitate the process and improve calculation time.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  • Gear, Jonathan I., et al. (author)
  • EANM practical guidance on uncertainty analysis for molecular radiotherapy absorbed dose calculations
  • 2018
  • In: European Journal of Nuclear Medicine and Molecular Imaging. - : Springer Science and Business Media LLC. - 1619-7070 .- 1619-7089. ; 45:13, s. 2456-2474
  • Journal article (peer-reviewed)abstract
    • A framework is proposed for modelling the uncertainty in the measurement processes constituting the dosimetry chain that are involved in internal absorbed dose calculations. The starting point is the basic model for absorbed dose in a site of interest as the product of the cumulated activity and a dose factor. In turn, the cumulated activity is given by the area under a time–activity curve derived from a time sequence of activity values. Each activity value is obtained in terms of a count rate, a calibration factor and a recovery coefficient (a correction for partial volume effects). The method to determine the recovery coefficient and the dose factor, both of which are dependent on the size of the volume of interest (VOI), are described. Consideration is given to propagating estimates of the quantities concerned and their associated uncertainties through the dosimetry chain to obtain an estimate of mean absorbed dose in the VOI and its associated uncertainty. This approach is demonstrated in a clinical example.
  •  
8.
  • Hindorf, Cecilia, et al. (author)
  • Clinical dosimetry in the treatment of bone tumors: old and new agents
  • 2011
  • In: Quarterly Journal of Nuclear Medicine and Molecular Imaging. - 1824-4785. ; 55:2, s. 198-204
  • Journal article (peer-reviewed)abstract
    • Treatment of multisite, sclerotic bone metastases is successfully performed by radionuclide therapy. Pain palliation is the most common aim for the treatment. Two radiopharmaceuticals are currently approved by the European Medicines Agency (Sm-153-EDTMP and Sr-89-Cl-2) whilst other radiopharmaceuticals are at different stages of development, or are approved in some European countries (Re-186-HEDP, Sn-117(m)-DTPA and Ra-223-Cl-2). The tissues at risk for the treatment are bone marrow and normal bone. A review of the methods applied for dosimetry for these tissues and for tumours is performed, including the calculation of S values (the absorbed dose per decay) and optimal procedures on how to obtain biodistribution data for each radiopharmaceutical. The dosimetry data can be used to individualise and further improve the treatment for each patient. Dosimetry for radionuclide therapy of bone metastases is feasible and can be performed in a routine clinical practice.
  •  
9.
  • Lassmann, M, et al. (author)
  • EANM Dosimetry Committee guidance document: good practice of clinical dosimetry reporting.
  • 2011
  • In: European journal of nuclear medicine and molecular imaging. - : Springer Science and Business Media LLC. - 1619-7089 .- 1619-7070. ; 38:1, s. 192-200
  • Journal article (peer-reviewed)abstract
    • Many recent publications in nuclear medicine contain data on dosimetric findings for existing and new diagnostic and therapeutic agents. In many of these articles, however, a description of the methodology applied for dosimetry is lacking or important details are omitted. The intention of the EANM Dosimetry Committee is to guide the reader through a series of suggestions for reporting dosimetric approaches. The authors are aware of the large amount of data required to report the way a given clinical dosimetry procedure was implemented. Another aim of this guidance document is to provide comprehensive information for preparing and submitting publications and reports containing data on internal dosimetry. This guidance document also contains a checklist which could be useful for reviewers of manuscripts submitted to scientific journals or for grant applications. In addition, this document could be used to decide which data are useful for a documentation of dosimetry results in individual patient records. This may be of importance when the approval of a new radiopharmaceutical by official bodies such as EMA or FDA is envisaged.
  •  
10.
  • Yonekura, Y, et al. (author)
  • ICRP Publication 140: Radiological Protection in Therapy with Radiopharmaceuticals.
  • 2019
  • In: Annals of the ICRP. - : SAGE Publications. - 1872-969X .- 0146-6453. ; 48:1, s. 5-95
  • Journal article (peer-reviewed)abstract
    • Radiopharmaceuticals are increasingly used for the treatment of various cancers with novel radionuclides, compounds, tracer molecules, and administration techniques. The goal of radiation therapy, including therapy with radiopharmaceuticals, is to optimise the relationship between tumour control probability and potential complications in normal organs and tissues. Essential to this optimisation is the ability to quantify the radiation doses delivered to both tumours and normal tissues. This publication provides an overview of therapeutic procedures and a framework for calculating radiation doses for various treatment approaches. In radiopharmaceutical therapy, the absorbed dose to an organ or tissue is governed by radiopharmaceutical uptake, retention in and clearance from the various organs and tissues of the body, together with radionuclide physical half-life. Biokinetic parameters are determined by direct measurements made using techniques that vary in complexity. For treatment planning, absorbed dose calculations are usually performed prior to therapy using a trace-labelled diagnostic administration, or retrospective dosimetry may be performed on the basis of the activity already administered following each therapeutic administration. Uncertainty analyses provide additional information about sources of bias and random variation and their magnitudes; these analyses show the reliability and quality of absorbed dose calculations. Effective dose can provide an approximate measure of lifetime risk of detriment attributable to the stochastic effects of radiation exposure, principally cancer, but effective dose does not predict future cancer incidence for an individual and does not apply to short-term deterministic effects associated with radiopharmaceutical therapy. Accident prevention in radiation therapy should be an integral part of the design of facilities, equipment, and administration procedures. Minimisation of staff exposures includes consideration of equipment design, proper shielding and handling of sources, and personal protective equipment and tools, as well as education and training to promote awareness and engagement in radiological protection. The decision to hold or release a patient after radiopharmaceutical therapy should account for potential radiation dose to members of the public and carers that may result from residual radioactivity in the patient. In these situations, specific radiological protection guidance should be provided to patients and carers.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view