SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Friborg Thomas) srt2:(2010-2014)"

Search: WFRF:(Friborg Thomas) > (2010-2014)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Christensen, Torben, et al. (author)
  • Monitoring the multi year carbon balance of a subarctic palsa mire with micrometeorological techniques
  • 2012
  • In: Ambio. - : Springer Science and Business Media LLC. - 0044-7447 .- 1654-7209. ; 41, s. 207-217
  • Journal article (peer-reviewed)abstract
    • This article reports a dataset on 8 years of monitoring carbon fluxes in a subarctic palsa mire based on micrometeorological eddy covariance measurements. The mire is a complex with wet minerotrophic areas and elevated dry palsa as well as intermediate sub-ecosystems. The measurements document primarily the emission originating from the wet parts of the mire dominated by a rather homogenous cover of Eriophorum angustifolium. The CO2/CH4 flux measurements performed during the years 2001-2008 showed that the areas represented in the measurements were a relatively stable sink of carbon with an average annual rate of uptake amounting to on average -46 g C m(-2) y(-1) including an equally stable loss through CH4 emissions (18-22 g CH4-C m(-2) y(-1)). This consistent carbon sink combined with substantial CH4 emissions is most likely what is to be expected as the permafrost under palsa mires degrades in response to climate warming.
  •  
3.
  • Heliasz, Michal, et al. (author)
  • Quantification of C uptake in subarctic birch forest after setback by an extreme insect outbreak
  • 2011
  • In: Geophysical Research Letters. - 1944-8007. ; 38
  • Journal article (peer-reviewed)abstract
    • The carbon dynamics of northern natural ecosystems contribute significantly to the global carbon balance. Periodic disturbances to these dynamics include insect herbivory. Larvae of autumn and winter moths (Epirrita autumnata and Operophtera brumata) defoliate mountain birch (Betula pubescens) forests in northern Scandinavia cyclically every 9-10 years and occasionally (50-150 years) extreme population densities can threaten ecosystem stability. Here we report impacts on C balance following a 2004 outbreak where a widespread area of Lake Tornetrask catchment was severely defoliated. We show that in the growing season of 2004 the forest was a much smaller net sink of C than in a reference year, most likely due to lower gross photosynthesis. Ecosystem respiration in 2004 was smaller and less sensitive to air temperature at nighttime relative to 2006. The difference in growing season uptake between an insect affected and non-affected year over the 316 km(2) area is in the order of 29 x 10(3) tonnes C equal to a reduction of the sink strength by 89%. Citation: Heliasz, M., T. Johansson, A. Lindroth, M. Molder, M. Mastepanov, T. Friborg, T. V. Callaghan, and T. R. Christensen (2011), Quantification of C uptake in subarctic birch forest after setback by an extreme insect outbreak, Geophys. Res. Lett., 38, L01704, doi:10.1029/2010GL044733.
  •  
4.
  • Jackowicz-Korczynski, Marcin, et al. (author)
  • Annual cycle of methane emissions from a subarctic peatland
  • 2010
  • In: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 115, s. G02009-
  • Journal article (peer-reviewed)abstract
    • Although much attention in recent years has been devoted to methane (CH4) emissions from northern wetlands, measurement based data sets providing full annual budgets are still limited in number. This study was designed to help fill the gap of year-round measurements of CH4 emissions from subarctic mires. We report continuous eddy correlation CH4 flux measurements made during 2006 and 2007 over the Stordalen mire in subarctic Sweden (68 degrees 20'N, 19 degrees 03'E, altitude 351 m) using a cryocooled tunable diode laser. The landscape-scale CH4 fluxes originated mainly from the permafrost free wet parts of the mire dominated by tall graminoid vegetation. The midseason average CH4 emission mean was 6.2 +/- 2.6 mg m(-2) h(-1). A detailed footprint analysis indicates an additional strong influence on the flux by the nearby shallow Lake Villasjon (0.17 km(2), maximum depth 1.3 m). A stable bimodal distribution of wind flow from either the east or the west allowed separating the lake and mire vegetation signals. The midseason lake emission rates were as high as 12.3 +/- 3.3 mg m(-2) h(-1). Documented CH4 fluxes are similar to results obtained by automatic chamber technique and higher than manual chamber measurements made in the wet minerotrophic section dominated by Eriophorum angustifolium. The high fluxes observed from this vegetation type are significant because the areal distribution of this source in the mire is expanding due to ongoing thawing of the permafrost. A simple peat temperature relationship with CH4 emissions was used to fill data gaps to construct a complete annual budget of CH4 fluxes over the studied area. The calculated annual CH4 emissions in 2006 and 2007 equaled 24.5 and 29.5 g CH4 m(-2) yr(-1), respectively. The summer season CH4 emissions dominated (65%) the annual flux, with the shoulder seasons of spring and autumn significant (25%) and a minor flux from the winter (10%).
  •  
5.
  • Lund, Magnus, et al. (author)
  • Trends in CO2 exchange in a high Arctic tundra heath, 2000-2010
  • 2012
  • In: Journal of Geophysical Research. - 2156-2202. ; 117
  • Journal article (peer-reviewed)abstract
    • We have measured the land-atmosphere CO2 exchange using the eddy covariance technique in a high Arctic tundra heath in northeast Greenland (Zackenberg). On the basis of 11 years of measurements (2000-2010), it was found that snow cover dynamics was important for the CO2 exchange. The start of CO2 uptake period correlated significantly with timing of snowmelt. Furthermore, for years with deep and long-lasting snowpacks, the following springs showed increased CO2 emission rates. In the first part of the study period, there was an increase of approximately 8 g C m(-2) yr(-1) in both accumulated gross primary production (GPP) and CO2 sink strength during summer. However, in the last few years, there were no significant changes in GPP, whereas ecosystem respiration (R-eco) increased (8.5 g C m(-2) yr(-1)) and ecosystem CO2 sink strength weakened (-4.1 g C m(-2) yr(-1)). It was found that temperature and temperature-related variables (maximum thaw depth and growing degree days) controlled the interannual variation in CO2 exchange. However, while R-eco showed a steady increase with temperature (5.8 g C m(-2) degrees C-1), the initial increase in GPP with temperature leveled off at the high end of observed temperature range. This suggests that future increases in temperature will weaken the ecosystem CO2 sink strength or even turn it into a CO2 source, depending on possible changes in vegetation structure and functioning as a response to a changing climate. If this trend is applicable also to other Arctic ecosystems, it will have implications for our current understanding of Arctic ecosystems dynamics.
  •  
6.
  • Tagesson, Torbern, et al. (author)
  • Modelling of growing season methane fluxes in a high-Arctic wet tundra ecosystem 1997-2010 using in situ and high-resolution satellite data
  • 2013
  • In: Tellus. Series B: Chemical and Physical Meteorology. - : Stockholm University Press. - 0280-6509 .- 1600-0889. ; 65
  • Journal article (peer-reviewed)abstract
    • Methane (CH4) fluxes 1997-2010 were studied by combining remotely sensed normalised difference water index (NDWI) with in situ CH4 fluxes from Rylekaerene, a high-Arctic wet tundra ecosystem in the Zackenberg valley, north-eastern Greenland. In situ CH4 fluxes were measured using the closed-chamber technique. Regression models between in situ CH4 fluxes and environmental variables [soil temperature (T-soil), water table depth (WtD) and active layer (AL) thickness] were established for different temporal and spatial scales. The relationship between in situ WtD and remotely sensed NDWI was also studied. The regression models were combined and evaluated against in situ CH4 fluxes. The models including NDWI as the input data performed on average slightly better [root mean square error (RMSE) = 1.56] than the models without NDWI (RMSE = 1.67), and they were better in reproducing CH4 flux variability. The CH4 flux model that performed the best included exponential relationships against temporal variation in T-soil and AL, an exponential relationship against spatial variation in WtD and a linear relationship between WtD and remotely sensed NDWI (RMSE = 1.50). There were no trends in modelled CH4 flux budgets between 1997 and 2010. Hence, during this period there were no trends in the soil temperature at 10 cm depth and NDWI.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view