SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Froese A) srt2:(2010-2014)"

Search: WFRF:(Froese A) > (2010-2014)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Lorenzen, Eline D., et al. (author)
  • Species-specific responses of Late Quaternary megafauna to climate and humans
  • 2011
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 479:7373, s. 359-364
  • Journal article (peer-reviewed)abstract
    • Despite decades of research, the roles of climate and humans in driving the dramatic extinctions of large-bodied mammals during the Late Quaternary period remain contentious. Here we use ancient DNA, species distribution models and the human fossil record to elucidate how climate and humans shaped the demographic history of woolly rhinoceros, woolly mammoth, wild horse, reindeer, bison and musk ox. We show that climate has been a major driver of population change over the past 50,000 years. However, each species responds differently to the effects of climatic shifts, habitat redistribution and human encroachment. Although climate change alone can explain the extinction of some species, such as Eurasian musk ox and woolly rhinoceros, a combination of climatic and anthropogenic effects appears to be responsible for the extinction of others, including Eurasian steppe bison and wild horse. We find no genetic signature or any distinctive range dynamics distinguishing extinct from surviving species, emphasizing the challenges associated with predicting future responses of extant mammals to climate and human-mediated habitat change.
  •  
2.
  • Willerslev, E, et al. (author)
  • Fifty thousand years of arctic vegetation change and megafauna diet
  • 2014
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 506:7486, s. 47-47
  • Journal article (peer-reviewed)abstract
    • Although it is generally agreed that the Arctic flora is among the youngest and least diverse on Earth, the processes that shaped it are poorly understood. Here we present 50 thousand years (kyr) of Arctic vegetation history, derived from the first large-scale ancient DNA metabarcoding study of circumpolar plant diversity. For this interval we also explore nematode diversity as a proxy for modelling vegetation cover and soil quality, and diets of herbivorous megafaunal mammals, many of which became extinct around 10 kyr bp (before present). For much of the period investigated, Arctic vegetation consisted of dry steppe-tundra dominated by forbs (non-graminoid herbaceous vascular plants). During the Last Glacial Maximum (25–15 kyr bp), diversity declined markedly, although forbs remained dominant. Much changed after 10 kyr bp, with the appearance of moist tundra dominated by woody plants and graminoids. Our analyses indicate that both graminoids and forbs would have featured in megafaunal diets. As such, our findings question the predominance of a Late Quaternary graminoid-dominated Arctic mammoth steppe.
  •  
3.
  • Arnold, L.J., et al. (author)
  • Paper II - Dirt, dates and DNA: OSL and radiocarbon chronologies of perennially-frozen sediments in Siberia, and their implications for sedimentary ancient DNA studies
  • 2011
  • In: Boreas. - : Wiley. - 1502-3885 .- 0300-9483. ; 40:3, s. 417-445
  • Journal article (peer-reviewed)abstract
    • Abstract in UndeterminedThe sedimentary ancient DNA (sedaDNA) technique offers a potentially invaluable means of investigating species evolution and extinction dynamics in high-latitude environments. An implicit assumption of the sedaDNA approach is that the extracted DNA is autochthonous with the host deposit and that it has not been physically transported from older source deposits or reworked within the sedimentary profile by postdepositional mixing. In this paper we investigate whether these fundamental conditions are upheld at seven perennially frozen wetland sites across the Taimyr Peninsula and coastal lowlands of north-central Siberia. Optically stimulated luminescence (OSL) and radiocarbon (C-14) dating are used to constrain the ages of both the inorganic and organic fractions of perennially frozen deposits from which sedaDNA of extinct and extant species have been recovered. OSL and C-14 age/depth profiles, as well as single-grain equivalent dose (De) distribution characteristics, are used to assess the stratigraphic integrity of these sedaDNA sequences by (i) identifying the presence of primary or reworked organic and inorganic material, and (ii) examining the types of depositional and postdepositional processes that have affected specific sedimentary facies. The results of this study demonstrate that even though DNA preservation and stratigraphic integrity are commonly superior in perennially frozen settings, this does not, in itself, guarantee the suitability of the sedaDNA approach. The combined OSL and C-14 chronologies reveal that certain perennially frozen sites may be poorly suited for sedaDNA analysis, and that careful site selection is paramount to ensuring the accuracy of any sedaDNA study - particularly for 'latest appearance date' estimates of extinct taxa.
  •  
4.
  • Jönsson, Per, et al. (author)
  • Relativistic CI Calculations of Spectroscopic Data for the 2p(6) and 2p(5)3l Configurations in Ne-lika Ions between Mg III and Kr XXVII
  • 2011
  • Reports (other academic/artistic)abstract
    • Energies, E1, M1, E2, M2 transition rates, oscillator strengths, and lifetimes from relativistic configuration interaction calculations are reported for the states of the 2p6, 2p53s, 2p53p, and 2p53d, configurations in all Ne-like ions between Mg III and Kr XXVII. Core-valence and core-core correlation effects are accounted for through SD-expansions to increasing sets of active orbitals. The Breit interaction and leading QED effects are included as perturbations. The results are compared with experiments and other recent benchmark calculations. In Mg III, Al IV, Si V, P VI, S VII, and Ar IX, for which experimental energies are known to high accuracy, the mean error in the calculated energies is only 0.011%.
  •  
5.
  • Jönsson, Per, et al. (author)
  • Relativistic CI calculations of spectroscopic data for the 2p6 and 2p53l configurations in Ne-like ions between Mg III and Kr XXVII
  • 2014
  • In: Atomic Data and Nuclear Data Tables. - : Elsevier. - 0092-640X .- 1090-2090. ; 100:1, s. 1-154
  • Journal article (peer-reviewed)abstract
    • Energies, E1, M1, E2, M2 transition rates, oscillator strengths, and lifetimes from relativistic configuration interaction calculations are reported for the states of the 2p6, 2p53s, 2p53p, and 2p53d, configurations in all Ne-like ions between Mg III and Kr XXVII. Core–valence and core–core correlation effects are accounted for through single and double excitations to increasing sets of active orbitals. The Breit interaction and leading quantum electrodynamic effects are included as perturbations. The results are compared with experiments and other recent benchmark calculations. In Mg III, Al IV, Si V, P VI, S VII, and Ar IX, for which experimental energies are known to high accuracy, the mean error in the calculated energies is only 0.011%.
  •  
6.
  • Orlando, Ludovic, et al. (author)
  • Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse
  • 2013
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 499:7456, s. 74-
  • Journal article (peer-reviewed)abstract
    • The rich fossil record of equids has made them a model for evolutionary processes(1). Here we present a 1.12-times coverage draft genome from a horse bone recovered from permafrost dated to approximately 560-780 thousand years before present (kyr BP)(2,3). Our data represent the oldest full genome sequence determined so far by almost an order of magnitude. For comparison, we sequenced the genome of a Late Pleistocene horse (43 kyr BP), and modern genomes of five domestic horse breeds (Equus ferus caballus), a Przewalski's horse (E. f. prze-walskii) and a donkey (E. asinus). Our analyses suggest that the Equus lineage giving rise to all contemporary horses, zebras and donkeys originated 4.0-4.5 million years before present (Myr BP), twice the conventionally accepted time to the most recent common ancestor of the genus Equus(4,5). We also find that horse population size fluctuated multiple times over the past 2 Myr, particularly during periods of severe climatic changes. We estimate that the Przewalski's and domestic horse populations diverged 38-72 kyr BP, and find no evidence of recent admixture between the domestic horse breeds and the Przewalski's horse investigated. This supports the contention that Przewalski's horses represent the last surviving wild horse population(6). We find similar levels of genetic variation among Przewalski's and domestic populations, indicating that the former are genetically viable and worthy of conservation efforts. We also find evidence for continuous selection on the immune system and olfaction throughout horse evolution. Finally, we identify 29 genomic regions among horse breeds that deviate from neutrality and show low levels of genetic variation compared to the Przewalski's horse. Such regions could correspond to loci selected early during domestication.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view