SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Funa K) srt2:(2000-2004)"

Search: WFRF:(Funa K) > (2000-2004)

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Brederlau, Anke, 1968, et al. (author)
  • The bone morphogenetic protein type Ib receptor is a major mediator of glial differentiation and cell survival in adult hippocampal progenitor cell culture.
  • 2004
  • In: Molecular biology of the cell. - 1059-1524. ; 15:8, s. 3863-75
  • Journal article (peer-reviewed)abstract
    • Bone morphogenetic proteins (BMPs) act as growth regulators and inducers of differentiation. They transduce their signal via three different type I receptors, termed activin receptor-like kinase 2 (Alk2), Alk3, or bone morphogenetic protein receptor Ia (BMPRIa) and Alk6 or BMPRIb. Little is known about functional differences between the three type I receptors. Here, we have investigated consequences of constitutively active (ca) and dominant negative (dn) type I receptor overexpression in adult-derived hippocampal progenitor cells (AHPs). The dn receptors have a nonfunctional intracellular but functional extracellular domain. They thus trap BMPs that are endogenously produced by AHPs. We found that effects obtained by overexpression of dnAlk2 and dnAlk6 were similar, suggesting similar ligand binding patterns for these receptors. Thus, cell survival was decreased, glial fibrillary acidic protein (GFAP) expression was reduced, whereas the number of oligodendrocytes increased. No effect on neuronal differentiation was seen. Whereas the expression of Alk2 and Alk3 mRNA remained unchanged, the Alk6 mRNA was induced after impaired BMP signaling. After dnAlk3 overexpression, cell survival and astroglial differentiation increased in parallel to augmented Alk6 receptor signaling. We conclude that endogenous BMPs mediate cell survival, astroglial differentiation and the suppression of oligodendrocytic cell fate mainly via the Alk6 receptor in AHP culture.
  •  
2.
  • Imamura, T, et al. (author)
  • Y box-binding protein-1 binds preferentially to single-stranded nucleic acids and exhibits 3'-->5' exonuclease activity.
  • 2001
  • In: Nucleic acids research. - 1362-4962. ; 29:5, s. 1200-7
  • Journal article (peer-reviewed)abstract
    • We have previously shown that Y box-binding protein-1 (YB-1) binds preferentially to cisplatin-modified Y box sequences. Based on structural and biochemical data, we predicted that this protein binds single-stranded nucleic acids. In the present study we confirmed the prediction and also discovered some unexpected functional features of YB-1. We found that the cold shock domain of the protein is necessary but not sufficient for double-stranded DNA binding while the C-tail domain interacts with both single-stranded DNA and RNA independently of the cold shock domain. In an in vitro translation system the C-tail domain of the protein inhibited translation but the cold shock domain did not. Both in vitro pull-down and in vivo co-immunoprecipitation assays revealed that YB-1 can form a homodimer. Deletion analysis mapped the C-tail domain of the protein as the region of homodimerization. We also characterized an intrinsic 3'-->5' DNA exonuclease activity of the protein. The region between residues 51 and 205 of its 324-amino acid extent is required for full exonuclease activity. Our findings suggest that YB-1 functions in regulating DNA/RNA transactions and that these actions involve different domains.
  •  
3.
  • Molander, Catrin, 1971, et al. (author)
  • Mechanism for the transcriptional repression by c-Myc on PDGF beta-receptor.
  • 2001
  • In: Journal of cell science. - 0021-9533. ; 114:Pt 8, s. 1533-44
  • Journal article (peer-reviewed)abstract
    • c-Myc plays a key role in the cell cycle dependent control of the PDGF beta-receptor mRNA. The mouse platelet-derived growth factor (PDGF) beta-receptor promoter contains a CCAAT motif, and NF-Y plays an essential role in its transcription. Coexpression of c-Myc represses PDGF beta-receptor luciferase reporter activity, and the CCAAT motif in the promoter is indispensable for this repression. Here we show that c-Myc binds NF-Y subunits, YB and YC, by immunoprecipitation from cotransfected COS-1 cells. The in vitro-translated c-Myc also binds the glutathione S-transferase (GST)-NF-YB fusion protein and GST-NF-YC, but not GST-NF-YA. The most C-terminal region of HAP domains of NF-YB and NF-YC, and the Myc homology boxes, but not the C-terminal bHLHZip domain, are indispensable for the coimmunoprecipitation, and also for the repression of PDGF beta-receptor. c-Myc binds NF-Y complex without affecting the efficiency of NF-Y binding to DNA. However, the expression of Myc represses the transcriptional activation of NF-YC when fused to the GAL4 DNA binding domain. Furthermore, this repression was seen only when Myc homology boxes are present, and NF-YC contains the c-Myc binding region.
  •  
4.
  • Oster, S K, et al. (author)
  • Myc is an essential negative regulator of platelet-derived growth factor beta receptor expression.
  • 2000
  • In: Molecular and cellular biology. - 0270-7306. ; 20:18, s. 6768-78
  • Journal article (peer-reviewed)abstract
    • Platelet-derived growth factor BB (PDGF BB) is a potent mitogen for fibroblasts as well as many other cell types. Interaction of PDGF BB with the PDGF beta receptor (PDGF-betaR) activates numerous signaling pathways and leads to a decrease in receptor expression on the cell surface. PDGF-betaR downregulation is effected at two levels, the immediate internalization of ligand-receptor complexes and the reduction in pdgf-betar mRNA expression. Our studies show that pdgf-betar mRNA suppression is regulated by the c-myc proto-oncogene. Both constitutive and inducible ectopic Myc protein can suppress pdgf-betar mRNA and protein. Suppression of pdgf-betar mRNA in response to Myc is specific, since expression of the related receptor pdgf-alphar is not affected. We further show that Myc suppresses pdgf-betar mRNA expression by a mechanism which is distinguishable from Myc autosuppression. Analysis of c-Myc-null fibroblasts demonstrates that Myc is required for the repression of pdgf-betar mRNA expression in quiescent fibroblasts following mitogen stimulation. In addition, it is evident that the Myc-mediated repression of pdgf-betar mRNA levels plays an important role in the regulation of basal pdgf-betar expression in proliferating cells. Thus, our studies suggest an essential role for Myc in a negative-feedback loop regulating the expression of the PDGF-betaR.
  •  
5.
  • Potula, Raghava, et al. (author)
  • Association of platelet-derived growth factor-B chain with simian human immunodeficiency virus encephalitis.
  • 2004
  • In: The American journal of pathology. - 0002-9440. ; 165:3, s. 815-24
  • Journal article (peer-reviewed)abstract
    • Chemokines and cytokines play a critical role in HIV infection, serving both to modulate virus replication and to recruit target cells to the site of infection. Platelet-derived growth factor (PDGF), a mitogen and chemoattractant for a wide variety of cells, is secreted by macrophages. Since macrophages are the target cells for lentiviral infection in the brain and PDGF is a known inducer of macrophage chemoattractant protein-1 (MCP)-1, a potent chemokine closely associated with HIV encephalitis, we investigated the association of PDGF-B chain (PDGF-B) with encephalitis in macaques caused by simian human immunodeficiency virus (SHIV), a chimera of HIV and SIV. Northern blot analysis confirmed elevated expression of PDGF-B chain mRNA in the brains from encephalitic macaques. Validation of these in vivo studies was confirmed in rhesus macrophage cultures infected with SHIV(KU2) in which we demonstrated heightened expression of PDGF-B chain mRNA. Nuclear run-off analysis established transcriptional up-regulation of PDGF-B chain in virus-inoculated macrophage cultures. Reciprocally, addition of exogenous PDGF enhanced virus replication and MCP-1 expression in these cells. Inhibition of virus replication by tyrosine kinase inhibitor, STI-571, and by PDGF-B antisense oligonucleotides confirmed the specificity of the PDGF effect. Relevance of these findings was confirmed by analysis of archival brain tissue from SHIV encephalitic and non-encephalitic macaques for PDGF-B chain expression. PDGF-B chain protein expression was observed in the virus-infected cells in microglial nodules in the brains of SHIV-encephalitic macaques.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view