SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Gallagher III J. S.) srt2:(2015-2019)"

Search: WFRF:(Gallagher III J. S.) > (2015-2019)

  • Result 1-8 of 8
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Aalto, Susanne, 1964, et al. (author)
  • The hidden heart of the luminous infrared galaxy IC 860: I. A molecular inflow feeding opaque, extreme nuclear activity
  • 2019
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 627
  • Journal article (peer-reviewed)abstract
    • High-resolution (0.'03-0.'09 (9-26 pc)) ALMA (100-350 GHz (λ3 to 0.8 mm)) and (0.'04 (11 pc)) VLA 45 GHz measurements have been used to image continuum and spectral line emission from the inner (100 pc) region of the nearby infrared luminous galaxy IC 860. We detect compact (r ∼ 10 pc), luminous, 3 to 0.8 mm continuum emission in the core of IC 860, with brightness temperatures TB > 160 K. The 45 GHz continuum is equally compact but significantly fainter in flux. We suggest that the 3 to 0.8 mm continuum emerges from hot dust with radius r ∼ 8 pc and temperature Td ∼ 280 K, and that it is opaque at millimetre wavelengths, implying a very large H2 column density N(H2)≥ 1026 cm-2. Vibrationally excited lines of HCN v2 = 1f J = 4 - 3 and 3-2 (HCN-VIB) are seen in emission and spatially resolved on scales of 40-50 pc. The line-to-continuum ratio drops towards the inner r = 4 pc, resulting in a ring-like morphology. This may be due to high opacities and matching HCN-VIB excitation- and continuum temperatures. The HCN-VIB emission reveals a north-south nuclear velocity gradient with projected rotation velocities of v = 100 km s-1 at r = 10 pc. The brightest emission is oriented perpendicular to the velocity gradient, with a peak HCN-VIB 3-2 TB of 115 K (above the continuum). Vibrational ground-state lines of HCN 3-2 and 4-3, HC15N 4-3, HCO+ 3-2 and 4-3, and CS 7-6 show complex line absorption and emission features towards the dusty nucleus. Redshifted, reversed P-Cygni profiles are seen for HCN and HCO+ consistent with gas inflow with vin ≤ 50 km s-1. Foreground absorption structures outline the flow, and can be traced from the north-east into the nucleus. In contrast, CS 7-6 has blueshifted line profiles with line wings extending out to -180 km s-1. We suggest that a dense and slow outflow is hidden behind a foreground layer of obscuring, inflowing gas. The centre of IC 860 is in a phase of rapid evolution where an inflow is building up a massive nuclear column density of gas and dust that feeds star formation and/or AGN activity. The slow, dense outflow may be signaling the onset of feedback. The inner, r = 10 pc, IR luminosity may be powered by an AGN or a compact starburst, which then would likely require a top-heavy initial mass function.
  •  
2.
  • Falstad, Niklas, 1987, et al. (author)
  • Hidden or missing outflows in highly obscured galaxy nuclei?
  • 2019
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 623
  • Journal article (peer-reviewed)abstract
    • Understanding the nuclear growth and feedback processes in galaxies requires investigating their often obscured central regions. One way to do this is to use (sub)millimeter line emission from vibrationally excited HCN (HCN-vib), which is thought to trace warm and highly enshrouded galaxy nuclei. It has been suggested that the most intense HCN-vib emission from a galaxy is connected to a phase of nuclear growth that occurs before the nuclear feedback processes have been fully developed. Aims. We aim to investigate if there is a connection between the presence of strong HCN-vib emission and the development of feedback in (ultra)luminous infrared galaxies ((U)LIRGs). Methods. We collected literature and archival data to compare the luminosities of rotational lines of HCN-vib, normalized to the total infrared luminosity, to the median velocities of 119 μm OH absorption lines, potentially indicating outflows, in a total of 17 (U)LIRGs. Results. The most HCN-vib luminous systems all lack signatures of significant molecular outflows in the far-infrared OH absorption lines. However, at least some of the systems with bright HCN-vib emission have fast and collimated outflows that can be seen in spectral lines at longer wavelengths, including in millimeter emission lines of CO and HCN (in its vibrational ground state) and in radio absorption lines of OH. Conclusions. We conclude that the galaxy nuclei with the highest L HCN-vib /L IR do not drive wide-angle outflows that are detectable using the median velocities of far-infrared OH absorption lines. This is possibly because of an orientation effect in which sources oriented in such a way that their outflows are not along our line of sight also radiate a smaller proportion of their infrared luminosity in our direction. It could also be that massive wide-angle outflows destroy the deeply embedded regions responsible for bright HCN-vib emission, so that the two phenomena cannot coexist. This would strengthen the idea that vibrationally excited HCN traces a heavily obscured stage of evolution before nuclear feedback mechanisms are fully developed.
  •  
3.
  • Aalto, Susanne, 1964, et al. (author)
  • Luminous, pc-scale CO 6-5 emission in the obscured nucleus of NGC 1377
  • 2017
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 608, s. A22-
  • Journal article (peer-reviewed)abstract
    • High-resolution submillimeter line and continuum observations are important in probing the morphology, column density, and dynamics of the molecular gas and dust around obscured active galactic nuclei (AGNs). With high-resolution (0'.06 x 0'.05 (6 x 5 pc)) ALMA 690 GHz observations we have found bright (T-B > 80 K) and compact (full width half maximum size (FWHM) size of 10 x 7 pc) CO 6-5 line emission in the nuclear region of the extremely radio-quiet galaxy NGC 1377. The CO 6-5 intensity is partially aligned with the previously discovered jet/outflow of NGC 1377 and is tracing dense (n > 10(4 )cm(-3)) hot molecular gas at the base of the outflow. The velocity structure is complex and shifts across the jet/outflow are discussed in terms of separate overlapping kinematical components or rotation. High-velocity gas (Delta v +/- 145 km s(-1)) is detected inside r
  •  
4.
  • König, Sabine, 1983, et al. (author)
  • Deep ALMA imaging of the merger NGC 1614. Is CO tracing a massive inflow of non-starforming gas?
  • 2016
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 594, s. A70-
  • Journal article (peer-reviewed)abstract
    • Aims: Observations of the molecular gas over scales of ~0.5 to several kpc provide crucial information on how molecular gas moves through galaxies, especially in mergers and interacting systems, where it ultimately reaches the galaxy center, accumulates, and feeds nuclear activity. Studying the processes involved in the gas transport is one of the important steps forward to understand galaxy evolution.Methods: 12CO, 13CO, and C18O 1-0 high-sensitivity ALMA observations (~4'' × 2'') were used to assess the properties of the large-scale molecular gas reservoir and its connection to the circumnuclear molecular ring in the merger NGC 1614. Specifically, the role of excitation and abundances were studied in this context. We also observed the molecular gas high-density tracers CN and CS.Results: The spatial distributions of the detected 12CO 1-0 and 13CO 1-0 emission show significant differences. 12CO traces the large-scale molecular gas reservoir, which is associated with a dust lane that harbors infalling gas, and extends into the southern tidal tails. 13CO emission is for the first time detected in the large-scale dust lane. In contrast to 12CO, its line emission peaks between the dust lane and the circumnuclear molecular ring. A 12CO-to-13CO 1-0 intensity ratio map shows high values in the ring region (~30) that are typical for the centers of luminous galaxy mergers and even more extreme values in the dust lane (>45). Surprisingly, we do not detect C18O emission in NGC 1614, but we do observe gas emitting the high-density tracers CN and CS.Conclusions: We find that the 12CO-to-13CO 1-0 line ratio in NGC 1614 changes from >45 in the 2 kpc dust lane to ~30 in the starburst nucleus. This drop in ratio with decreasing radius is consistent with the molecular gas in the dust lane being kept in a diffuse, unbound state while it is being funneled toward the nucleus. This also explains why there are no (or very faint) signs of star formation in the dust lane, despite its high 12CO luminosity. In the inner 1.5 kpc, the gas is compressed into denser and most likely self-gravitating clouds (traced by CN and CS emission), allowing it to power the intense central starburst. We find a high 16O-to-18O abundance ratio in the starburst region (≥900), typical of quiescent disk gas. This is surprising because by now, the starburst is expected to have enriched the nuclear interstellar medium in 18O relative to 16O. We suggest that the massive inflow of gas may be partially responsible for the low 18O/16O abundance since it will dilute the starburst enrichment with unprocessed gas from greater radial distances. The 12CO-to-13CO abundance of >90 we infer from the line ratio is consistent with this scenario. It suggests that the nucleus of NGC 1614 is in a transient phase of its evolution where the starburst and the nuclear growth is still being fuelled by returning gas from the minor merger event.
  •  
5.
  • Varenius, Eskil, 1986, et al. (author)
  • Subarcsecond international LOFAR radio images of Arp 220 at 150 MHz: A kpc-scale star forming disk surrounding nuclei with shocked outflows
  • 2016
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 593, s. A86-
  • Journal article (peer-reviewed)abstract
    • Context. Arp 220 is the prototypical ultra luminous infrared galaxy (ULIRG). Despite extensive studies, the structure at MHz-frequencies has remained unknown because of limits in spatial resolution.Aims: This work aims to constrain the flux and shape of radio emission from Arp 220 at MHz frequencies.Methods: We analyse new observations with the International Low Frequency Array (LOFAR) telescope, and archival data from the Multi-Element Radio Linked Interferometer Network (MERLIN) and the Karl G. Jansky Very Large Array (VLA). We model the spatially resolved radio spectrum of Arp 220 from 150 MHz to 33 GHz.Results: We present an image of Arp 220 at 150 MHz with resolution 0.̋65 × 0.̋35, sensitivity 0.15 mJy beam-1, and integrated flux density 394 ± 59 mJy. More than 80% of the detected flux comes from extended (6''≈ 2.2 kpc) steep spectrum (α = -0.7) emission, likely from star formation in the molecular disk surrounding the two nuclei. We find elongated features extending 0.3'' (110 pc) and 0.9'' (330 pc) from the eastern and western nucleus respectively, which we interpret as evidence for outflows. The extent of radio emission requires acceleration of cosmic rays far outside the nuclei. We find that a simple three component model can explain most of the observed radio spectrum of the galaxy. When accounting for absorption at 1.4 GHz, Arp 220 follows the FIR/radio correlation with q = 2.36, and we estimate a star formation rate of 220 M⊙ yr-1. We derive thermal fractions at 1 GHz of less than 1% for the nuclei, which indicates that a major part of the UV-photons are absorbed by dust.Conclusions: International LOFAR observations shows great promise to detect steep spectrum outflows and probe regions of thermal absorption. However, in LIRGs the emission detected at 150 MHz does not necessarily come from the main regions of star formation. This implies that high spatial resolution is crucial for accurate estimates of star formation rates for such galaxies at 150 MHz.
  •  
6.
  • Alatalo, K., et al. (author)
  • After the interaction: An efficiently star-forming molecular disk in NGC 5195
  • 2016
  • In: Astrophysical Journal. - 1538-4357 .- 0004-637X. ; 830:2, s. 137-
  • Journal article (peer-reviewed)abstract
    • We present new molecular gas maps of NGC 5195 (alternatively known as M51b) from the Combined Array for Research in Millimeter Astronomy, including 12CO(1-0), 13CO(1-0), CN(1-), CS(2-1), and 3 mm continuum. We also detected HCN(1-0) and HCO+(1-0) using the Onsala Space Observatory. NGC 5195 has a 12CO/13CO ratio (R12/13= 11.4 ± 0.5) consistent with normal star-forming galaxies. The CN(1-0) intensity is higher than is seen in an average star-forming galaxy, possibly enhanced in the diffuse gas in photo-dissociation regions. Stellar template fitting of the nuclear spectrum of NGC 5195 shows two stellar populations: an 80% mass fraction of old (10 Gyr) and a 20% mass fraction of intermediate-aged (?1 Gyr) stellar populations. This provides a constraint on the timescale over which NGC 5195 experienced enhanced star formation during its interaction with M51a. The average molecular gas depletion timescale in NGC 5195 is = 3.08 Gyr, a factor of larger than the depletion timescales in nearby star-forming galaxies, but consistent with the depletion seen in CO-detected early-type galaxies. While radio continuum emission at centimeter and millimeter wavelengths is present in the vicinity of the nucleus of NGC 5195, we find it is most likely associated with nuclear star formation rather than radio-loud AGN activity. Thus, despite having a substantial interaction with M51a ?1/2 Gyr ago, the molecular gas in NGC 5195 has resettled and is currently forming stars at an efficiency consistent with settled early-type galaxies.
  •  
7.
  • Gouliermis, Dimitrios A., et al. (author)
  • Hierarchical star formation across the ring galaxy NGC 6503
  • 2015
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 452:4, s. 3508-3528
  • Journal article (peer-reviewed)abstract
    • We present a detailed clustering analysis of the young stellar population across the star-forming ring galaxy NGC 6503, based on the deep Hubble Space Telescope photometry obtained with the Legacy ExtraGalactic UV Survey. We apply a contour-based map analysis technique and identify in the stellar surface density map 244 distinct star-forming structures at various levels of significance. These stellar complexes are found to be organized in a hierarchical fashion with 95 per cent being members of three dominant super-structures located along the star-forming ring. The size distribution of the identified structures and the correlation between their radii and numbers of stellar members show power-law behaviours, as expected from scale-free processes. The self-similar distribution of young stars is further quantified from their autocorrelation function, with a fractal dimension of similar to 1.7 for length-scales between similar to 20 pc and 2.5 kpc. The young stellar radial distribution sets the extent of the star-forming ring at radial distances between 1 and 2.5 kpc. About 60 per cent of the young stars belong to the detected stellar structures, while the remaining stars are distributed among the complexes, still inside the ring of the galaxy. The analysis of the time-dependent clustering of young populations shows a significant change from a more clustered to a more distributed behaviour in a time-scale of similar to 60 Myr. The observed hierarchy in stellar clustering is consistent with star formation being regulated by turbulence across the ring. The rotational velocity difference between the edges of the ring suggests shear as the driving mechanism for this process. Our findings reveal the interesting case of an inner ring forming stars in a hierarchical fashion.
  •  
8.
  • Yoast-Hull, T. M., et al. (author)
  • γ-Ray emission from Arp 220: indications of an active galactic nucleus
  • 2017
  • In: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966 .- 1745-3925 .- 1745-3933. ; 469:1, s. L89-L93
  • Journal article (peer-reviewed)abstract
    • Extragalactic cosmic ray populations are important diagnostic tools for tracking the distribution of energy in nuclei and for distinguishing between activity powered by star formation versus active galactic nuclei (AGNs). Here, we compare different diagnostics of the cosmic ray populations of the nuclei of Arp 220 based on radio synchrotron observations and the recent gamma-ray detection. We find the gamma-ray and radio emission to be incompatible; a joint solution requires at minimum a factor of 4-8 times more energy coming from supernovae and a factor of 40-70 more mass in molecular gas than that is observed. We conclude that this excess of the gamma-ray flux in comparison to all other diagnostics of star-forming activity indicates that there is an AGN present that is providing the extra cosmic rays, likely in the western nucleus.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-8 of 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view