SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Galle Bo 1952) srt2:(2010-2014)"

Search: WFRF:(Galle Bo 1952) > (2010-2014)

  • Result 1-10 of 29
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Aiuppa, A., et al. (author)
  • Gas measurements from the Costa Rica-Nicaragua volcanic segment suggest possible along-arc variations in volcanic gas chemistry
  • 2014
  • In: Earth and Planetary Science Letters. - : Elsevier BV. - 1385-013X .- 0012-821X. ; 407, s. 134-147
  • Journal article (peer-reviewed)abstract
    • Obtaining accurate estimates of the CO2 output from arc volcanism requires a precise understanding of the potential along-arc variations in volcanic gas chemistry, and ultimately of the magmatic gas signature of each individual arc segment. In an attempt to more fully constrain the magmatic gas signature of the Central America Volcanic Arc (CAVA), we present here the results of a volcanic gas survey performed during March and April 2013 at five degassing volcanoes within the Costa Rica-Nicaragua volcanic segment (CNVS). Observations of the volcanic gas plume made with a multicomponent gas analyzer system (Multi-GAS) have allowed characterization of the CO2/SO2-ratio signature of the plumes at Pads (0.30 +/- 0.06, mean +/- SD), Rincon de la Vieja (27.0 +/- 15.3), and Turrialba (2.2 +/- 0.8) in Costa Rica, and at Telica (3.0 +/- 0.9) and San Cristobal (4.2 +/- 1.3) in Nicaragua (all ratios on molar basis). By scaling these plume compositions to simultaneously measured SO2 fluxes, we estimate that the CO2 outputs at CNVS volcanoes range from low (25.5 +/- 11.0 tons/day at Pods) to moderate (918 to 1270 tons/day at Turrialba). These results add a new information to the still fragmentary volcanic CO2 output data set, and allow estimating the total CO2 output from the CNVS at 2835 1364 tons/day. Our novel results, with previously available information about gas emissions in Central America, are suggestive of distinct volcanic gas CO2/S-T (= SO2 + H2S)-ratio signature for magmatic volatiles in Nicaragua (similar to 3) relative to Costa Rica (similar to 0.5-1.0). We also provide additional evidence for the earlier theory relating the CO2-richer signature of Nicaragua volcanism to increased contributions from slab-derived fluids, relative to more-MORB-like volcanism in Costa Rica. The sizeable along-arc variations in magmatic gas chemistry that the present study has suggested indicate that additional gas observations are urgently needed to more-precisely confine the volcanic CO2 from the CAVA, and from global arc volcanism.
  •  
2.
  •  
3.
  • Arellano, Santiago, 1981, et al. (author)
  • New developments on remote sensing studies of volcanic gas emissions by solar infrared spectroscopy
  • 2011
  • In: 11th IAVCEI-CCVG Gas Workshop, September 1 - 10, 2011, Kamchatka, Russia.
  • Conference paper (peer-reviewed)abstract
    • In this contribution, we will present some recent developments made by our group on the application of solar occultation remote sensing to the measurement of volcanic gas emissions in the infrared spectral region. These include the automation of Fourier Transform Spectrometers (FTS) and novel methods for radiation collection and spectrometric analysis.Solar FTS is a proven and versatile method for measuring volcanogenic gases. However, its relatively high cost and complexity on data collection and analysis have precluded its wider use by observatories as a permanent monitoring tool. We will present some results of a field experimentperformed at Popocatépetl volcano (Mexico) within the FIEL-VOLCAN project in April 2010, to show the feasibility of automating a solar FTS on volcanic settings to measure SO2/HCl molar ratios. The system includes a compact solar tracker for automatic radiation collection from a stationary point as well as an embedded computer for data acquisition. Data is evaluated off-line by using e.g., the Chalmers-QESOF program.Further simplifications of the transfer optics and spectroscopic analysis have been investigatedby our group and their operation principles and preliminary results will be presented.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  • Bobrowski, N., et al. (author)
  • Gas emission measurements of the active lava lake of Nyiragongo, DR Congo
  • 2011
  • In: Geophysical Research Abstracts, Vol. 13, EGU2011-10804, EGU General Assembly 2011, Vienna, Austria.
  • Conference paper (peer-reviewed)abstract
    • In June 2007 and July 2010 spectroscopic measurements and chemical in-situ studies were carried out at Nyiragongovolcano located 15 km north of the city Goma, North Kivu region (DRC), both at the crater rim and within the crater itself, next to the lava lake. Nyiragongo volcano belongs to the Virunga volcanic chain and it is associated with the Western branch of the Great Rift Valley. The volcanism at Nyiragongo is caused by the rifting of the Earth’s crust where two parts of the African plates are breaking apart. Niyragongo crater contains the biggest lava lake on Earth and it is considered one of the most active volcanoes in the world.The ground-based remote sensing technique MAX-DOAS (Multi-Axis Differential Optical Absorption Spectroscopy)using scattered sunlight has been applied during both field trips at the crater rim of the volcano tomeasure sulphur dioxide, halogen oxides and nitrogen oxide. Additionally filter pack and spectroscopic in-situ carbon dioxide measurements were carried out, as well as SO2 flux measurements by a scanning DOAS instrumentfrom the NOVAC project at the flank of the volcano.Nyiragongo is the first rift volcano where halogen oxides have been observed in the plume.Observations indicate that the gas composition of Nyiragongo might change with a changing lava lake level inshort and long-term time scales. Before and during an overflow of the lava lake the molar ratios of BrO/SO2 weredecreasing in 2007 and 2010 from about 3.10-5 to about 0 (below the detection limit). Such a decreasing trendwas also observed before and during the eruption of Mt. Etna 2006 and 2008.In a larger timescale between 2007 and 2010 the molar ratios of S/Cl and CO2/SO2 generally decreased from 6.7 -16.5 to 0.7 – 2.1, from 5 -10 to 1 - 5, respectively. The lower S/Cl and CO2/SO2 could lead to the conclusion thatthe magma reservoir below Niyragongo has had no new input from a deeper source.The chemical composition as well as its temporal variability within the volcanic plume from the lava lake will be discussed, as well as its implication on the understanding of the dynamics of the plumbing system of this volcano.
  •  
8.
  •  
9.
  • Conde Jacobo, Alexander Vladimir, 1979, et al. (author)
  • A rapid deployment instrument network for temporarily monitoring volcanic SO2 emissions - a study case from Telica volcano
  • 2014
  • In: Geoscientific Instrumentation, Methods and Data Systems. - : Copernicus GmbH. - 2193-0856 .- 2193-0864. ; 3:2, s. 127-134
  • Journal article (peer-reviewed)abstract
    • Volcanic gas emissions play a crucial role in describing geophysical processes; hence measurements of magmatic gases such as SO2 can be used as tracers prior and during volcanic crises. Different measurement techniques based on optical spectroscopy have provided valuable information when assessing volcanic crises. This paper describes the design and implementation of a network of spectroscopic instruments based on Differential Optical Absorption Spectroscopy (DOAS) for remote sensing of volcanic SO2 emissions, which is robust, portable and can be deployed in relative short time. The setup allows the processing of raw data in situ even in remote areas with limited accessibility, and delivers pre-processed data to end-users in near real time even during periods of volcanic crisis, via a satellite link. In addition, the hardware can be used to conduct short term studies of volcanic plumes in remotes areas. The network was tested at Telica, an active volcano located in western Nicaragua, producing what is so far the largest data set of continuous SO2 flux measurements at this volcano.
  •  
10.
  • Conde Jacobo, Alexander Vladimir, 1979, et al. (author)
  • Measurements of volcanic SO2 and CO2 fluxes by combined DOAS, Multi-GAS and FTIR observations: a case study from Turrialba and Telica volcanoes
  • 2014
  • In: International Journal of Earth Sciences. - : Springer Science and Business Media LLC. - 1437-3262 .- 1437-3254. ; 103:8, s. 2335-2347
  • Journal article (peer-reviewed)abstract
    • Over the past few decades, substantial progress has been made to overcome the technical difficulties of continuously measuring volcanic SO2 emissions. However, measurements of CO2 emissions still present many difficulties, partly due to the lack of instruments that can directly measure CO2 emissions and partly due to its strong atmospheric background. In order to overcome these difficulties, a commonly taken approach is to combine differential optical absorption spectroscopy (DOAS) by using NOVAC scan-DOAS instruments for continuous measurements of crateric SO2 emissions, and electrochemical/NDIR multi-component gas analyser system (multi-GAS) instruments for measuring CO2/SO2 ratios of excerpts of the volcanic plume. This study aims to quantify the representativeness of excerpts of CO2/SO2 ratios measured by Multi-GAS as a fraction of the whole plume composition, by comparison with simultaneously measured CO2/SO2 ratios using cross-crater Fourier transform infrared spectroscopy (FTIR). Two study cases are presented: Telica volcano (Nicaragua), with a homogenous plume, quiescent degassing from a deep source and ambient temperature, and Turrialba volcano (Costa Rica), which has a non-homogeneous plume from three main sources with different compositions and temperatures. Our comparison shows that in our "easier case" (Telica), FTIR and Multi-GAS CO2/SO2 ratios agree within a factor about 3 %. In our "complicated case" (Turrialba), Multi-GAS and FTIR yield CO2/SO2 ratios differing by approximately 13-25 % at most. These results suggest that a fair estimation of volcanic CO2 emissions can be provided by the combination of DOAS and Multi-GAS instruments for volcanoes with similar degassing conditions as Telica or Turrialba. Based on the results of this comparison, we report that by the time our measurements were made, Telica and Turrialba were emitting approximately 100 and 1,000 t day(-1) of CO2, respectively.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 29

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view