SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Galloway Z.) srt2:(2021)"

Search: WFRF:(Galloway Z.) > (2021)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Gambrel, A. E., et al. (author)
  • The XFaster Power Spectrum and Likelihood Estimator for the Analysis of Cosmic Microwave Background Maps
  • 2021
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 922:2
  • Journal article (peer-reviewed)abstract
    • We present the XFaster analysis package, a fast, iterative angular power spectrum estimator based on a diagonal approximation to the quadratic Fisher matrix estimator. It uses Monte Carlo simulations to compute noise biases and filter transfer functions and is thus a hybrid of both Monte Carlo and quadratic estimator methods. In contrast to conventional pseudo-Cℓ–based methods, the algorithm described here requires a minimal number of simulations and does not require them to be precisely representative of the data to estimate accurate covariance matrices for the bandpowers. The formalism works with polarization-sensitive observations and also data sets with identical, partially overlapping, or independent survey regions. The method was first implemented for the analysis of BOOMERanG data and also used as part of the Planck analysis. Here we describe the full, publicly available analysis package, written in Python, as developed for the analysis of data from the 2015 flight of the Spider instrument. The package includes extensions for self-consistently estimating null spectra and estimating fits for Galactic foreground contributions. We show results from the extensive validation of XFaster using simulations and its application to the Spider data set.
  •  
2.
  • Aprile, E., et al. (author)
  • Search for Coherent Elastic Scattering of Solar B-8 Neutrinos in the XENON1T Dark Matter Experiment
  • 2021
  • In: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 126:9
  • Journal article (peer-reviewed)abstract
    • We report on a search for nuclear recoil signals from solar B-8 neutrinos elastically scattering off xenon nuclei in XENON1T data, lowering the energy threshold from 2.6 to 1.6 keV. We develop a variety of novel techniques to limit the resulting increase in backgrounds near the threshold. No significant B-8 neutrinolike excess is found in an exposure of 0.6 t x y. For the first time, we use the nondetection of solar neutrinos to constrain the light yield from 1-2 keV nuclear recoils in liquid xenon, as well as nonstandard neutrino-quark interactions. Finally, we improve upon world-leading constraints on dark matter-nucleus interactions for dark matter masses between 3 and 11 GeV c(-2) by as much as an order of magnitude.
  •  
3.
  • Aprile, E., et al. (author)
  • Search for inelastic scattering of WIMP dark matter in XENON1T
  • 2021
  • In: Physical Review D. - 2470-0010 .- 2470-0029. ; 103:6
  • Journal article (peer-reviewed)abstract
    • We report the results of a search for the inelastic scattering of weakly interacting massive particles (WIMPs) in the XENON1T dark matter experiment. Scattering off Xe-129 is the most sensitive probe of inelastic WIMP interactions, with a signature of a 39.6 keV deexcitation photon detected simultaneously with the nuclear recoil. Using an exposure of 0.83 tonne-years, we find no evidence of inelastic WIMP scattering with a significance of more than 2 sigma. A profile-likelihood ratio analysis is used to set upper limits on the cross section of WIMP-nucleus interactions. We exclude new parameter space for WIMPs heavier than 100 GeV/c(2), with the strongest upper limit of 3.3 x 10(-39) cm(2) for 130 GeV/c(2) WIMPs at 90% confidence level.
  •  
4.
  • Li, Z. S., et al. (author)
  • Broadband X-ray spectra and timing of the accreting millisecond pulsar Swift J1756.9-2508 during its 2018 and 2019 outbursts
  • 2021
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 649
  • Journal article (peer-reviewed)abstract
    • The accreting millisecond X-ray pulsar Swift J1756.9-2508 launched into an outburst in April 2018 and June 2019 - 8.7 years after the previous period of activity. We investigated the temporal, timing, and spectral properties of these two outbursts using data from NICER, XMM-Newton, NuSTAR, INTEGRAL, Swift, and Insight-HXMT. The two outbursts exhibited similar broadband spectra and X-ray pulse profiles. For the first time, we report the detection of the pulsed emission up to similar to 100 keV that was observed by Insight-HXMT during the 2018 outburst. We also found the pulsation up to similar to 60 keV that was observed by NICER and NuSTAR during the 2019 outburst. We performed a coherent timing analysis combining the data from the two outbursts. The binary system is well described by a constant orbital period over a time span of similar to 12 years. The time-averaged broadband spectra are well fitted by the absorbed thermal Comptonization model COMPPS in a slab geometry with an electron temperature, kT(e)=40-50 keV, Thomson optical depth tau similar to 1.3, blackbody seed photon temperature kT(bb, seed)similar to 0.7-0.8 keV, and hydrogen column density of N-H similar to 4.2x10(22) cm(-2). We searched the available data for type-I (thermonuclear) X-ray bursts, but found none, which is unsurprising given the estimated low peak accretion rate (approximate to 0.05 of the Eddington rate) and generally low expected burst rates for hydrogen-poor fuel. Based on the history of four outbursts to date, we estimate the long-term average accretion rate at roughly 5x10(-12) M-circle dot yr(-1) for an assumed distance of 8 kpc. The expected mass transfer rate driven by gravitational radiation in the binary implies the source may be no closer than 4 kpc. Swift J1756.9-2508 is the third low mass X-ray binary exhibiting "double" outbursts, which are separated by much shorter intervals than what we typically see and are likely to result from interruption of the accretion flow from the disk onto the neutron star. Such behavior may have important implications for the disk instability model.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view