SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Garpebring Anders) "

Search: WFRF:(Garpebring Anders)

  • Result 1-10 of 57
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Björnfot, Cecilia, et al. (author)
  • Assessing cerebral arterial pulse wave velocity using 4D flow MRI
  • 2021
  • In: Journal of Cerebral Blood Flow and Metabolism. - : Sage Publications. - 0271-678X .- 1559-7016. ; 41:10, s. 2769-2777
  • Journal article (peer-reviewed)abstract
    • Intracranial arterial stiffening is a potential early marker of emerging cerebrovascular dysfunction and could be mechanistically involved in disease processes detrimental to brain function via several pathways. A prominent consequence of arterial wall stiffening is the increased velocity at which the systolic pressure pulse wave propagates through the vasculature. Previous non-invasive measurements of the pulse wave propagation have been performed on the aorta or extracranial arteries with results linking increased pulse wave velocity to brain pathology. However, there is a lack of intracranial “target-organ” measurements. Here we present a 4D flow MRI method to estimate pulse wave velocity in the intracranial vascular tree. The method utilizes the full detectable branching structure of the cerebral vascular tree in an optimization framework that exploits small temporal shifts that exists between waveforms sampled at varying depths in the vasculature. The method is shown to be stable in an internal consistency test, and of sufficient sensitivity to robustly detect age-related increases in intracranial pulse wave velocity.
  •  
2.
  • Björnfot, Cecilia, et al. (author)
  • Cerebral arterial stiffness is linked to white matter hyperintensities and perivascular spaces in older adults : a 4D flow MRI study
  • 2024
  • In: Journal of Cerebral Blood Flow and Metabolism. - : Sage Publications. - 0271-678X .- 1559-7016.
  • Journal article (peer-reviewed)abstract
    • White matter hyperintensities (WMH), perivascular spaces (PVS) and lacunes are common MRI features of small vessel disease (SVD). However, no shared underlying pathological mechanism has been identified. We investigated whether SVD burden, in terms of WMH, PVS and lacune status, was related to changes in the cerebral arterial wall by applying global cerebral pulse wave velocity (gcPWV) measurements, a newly described marker of cerebral vascular stiffness. In a population-based cohort of 190 individuals, 66–85 years old, SVD features were estimated from T1-weighted and FLAIR images while gcPWV was estimated from 4D flow MRI data. Additionally, the gcPWV’s stability to variations in field-of-view was analyzed. The gcPWV was 10.82 (3.94) m/s and displayed a significant correlation to WMH and white matter PVS volume (r = 0.29, p < 0.001; r = 0.21, p = 0.004 respectively from nonparametric tests) that persisted after adjusting for age, blood pressure variables, body mass index, ApoB/A1 ratio, smoking as well as cerebral pulsatility index, a previously suggested early marker of SVD. The gcPWV displayed satisfactory stability to field-of-view variations. Our results suggest that SVD is accompanied by changes in the cerebral arterial wall that can be captured by considering the velocity of the pulse wave transmission through the cerebral arterial network.
  •  
3.
  • Vikner, Tomas, et al. (author)
  • Blood-brain barrier integrity is linked to cognitive function, but not to cerebral arterial pulsatility, among elderly
  • 2024
  • In: Scientific Reports. - : Springer Nature. - 2045-2322. ; 14:1
  • Journal article (peer-reviewed)abstract
    • Blood-brain barrier (BBB) disruption may contribute to cognitive decline, but questions remain whether this association is more pronounced for certain brain regions, such as the hippocampus, or represents a whole-brain mechanism. Further, whether human BBB leakage is triggered by excessive vascular pulsatility, as suggested by animal studies, remains unknown. In a prospective cohort (N = 50; 68-84 years), we used contrast-enhanced MRI to estimate the permeability-surface area product (PS) and fractional plasma volume ( formula presented ), and 4D flow MRI to assess cerebral arterial pulsatility. Cognition was assessed by the Montreal Cognitive Assessment (MoCA) score. We hypothesized that high PS would be associated with high arterial pulsatility, and that links to cognition would be specific to hippocampal PS. For 15 brain regions, PS ranged from 0.38 to 0.85 (·10-3 min-1) and formula presented from 0.79 to 1.78%. Cognition was related to PS (·10-3 min-1) in hippocampus (β = - 2.9; p = 0.006), basal ganglia (β = - 2.3; p = 0.04), white matter (β = - 2.6; p = 0.04), whole-brain (β = - 2.7; p = 0.04) and borderline-related for cortex (β = - 2.7; p = 0.076). Pulsatility was unrelated to PS for all regions (p > 0.19). Our findings suggest PS-cognition links mainly reflect a whole-brain phenomenon with only slightly more pronounced links for the hippocampus, and provide no evidence of excessive pulsatility as a trigger of BBB disruption.
  •  
4.
  •  
5.
  • Adjeiwaah, Mary, 1980-, et al. (author)
  • Dosimetric Impact of MRI Distortions : A Study on Head and Neck Cancers
  • 2019
  • In: International Journal of Radiation Oncology, Biology, Physics. - : Elsevier. - 0360-3016 .- 1879-355X. ; 103:4, s. 994-1003
  • Journal article (peer-reviewed)abstract
    • Purpose: To evaluate the effect of magnetic resonance (MR) imaging (MRI) geometric distortions on head and neck radiation therapy treatment planning (RTP) for an MRI-only RTP. We also assessed the potential benefits of patient-specific shimming to reduce the magnitude of MR distortions for a 3-T scanner.Methods and Materials: Using an in-house Matlab algorithm, shimming within entire imaging volumes and user-defined regions of interest were simulated. We deformed 21 patient computed tomography (CT) images with MR distortion fields (gradient nonlinearity and patient-induced susceptibility effects) to create distorted CT (dCT) images using bandwidths of 122 and 488 Hz/mm at 3 T. Field parameters from volumetric modulated arc therapy plans initially optimized on dCT data sets were transferred to CT data to compute a new plan. Both plans were compared to determine the impact of distortions on dose distributions.Results: Shimming across entire patient volumes decreased the percentage of voxels with distortions of more than 2 mm from 15.4% to 2.0%. Using the user-defined region of interest (ROI) shimming strategy, (here the Planning target volume (PTV) was the chosen ROI volume) led to increased geometric for volumes outside the PTV, as such voxels within the spinal cord with geometric shifts above 2 mm increased from 11.5% to 32.3%. The worst phantom-measured residual system distortions after 3-dimensional gradient nonlinearity correction within a radial distance of 200 mm from the isocenter was 2.17 mm. For all patients, voxels with distortion shifts of more than 2 mm resulting from patient-induced susceptibility effects were 15.4% and 0.0% using bandwidths of 122 Hz/mm and 488 Hz/mm at 3 T. Dose differences between dCT and CT treatment plans in D-50 at the planning target volume were 0.4% +/- 0.6% and 0.3% +/- 0.5% at 122 and 488 Hz/mm, respectively.Conclusions: The overall effect of MRI geometric distortions on data used for RTP was minimal. Shimming over entire imaging volumes decreased distortions, but user-defined subvolume shimming introduced significant errors in nearby organs and should probably be avoided.
  •  
6.
  • Adjeiwaah, Mary, 1980- (author)
  • Quality assurance for magnetic resonance imaging (MRI) in radiotherapy
  • 2019
  • Doctoral thesis (other academic/artistic)abstract
    • The use of Magnetic Resonance Imaging (MRI) in the radiotherapy (RT) treatment planning workflow is increasing. MRI offers superior soft-tissue contrast compared to Computed Tomography (CT) and therefore improves the accuracy in target volume definitions. There are, however concerns with inherent geometric distortions from system- (gradient nonlinearities and main magnetic field inhomogeneities) and patient-related sources (magnetic susceptibility effect and chemical shift). The lack of clearly defined quality assurance (QA) procedures has also raised questions on the ability of current QA protocols to detect common image quality degradations under radiotherapy settings. To fully implement and take advantage of the benefits of MRI in radiotherapy, these concerns need to be addressed.In Papers I and II, the dosimetric impact of MR distortions was investigated. Patient CTs (CT) were deformed with MR distortion vector fields (from the residual system distortions after correcting for gradient nonlinearities and patient-induced susceptibility distortions) to create distorted CT (dCT) images. Field parameters from volumetric modulated arc therapy (VMAT) treatment plans initially optimized on dCT data sets were transferred to CT data to compute new treatment plans. Data from 19 prostate and 21 head and neck patients were used for the treatment planning. The dCT and CT treatment plans were compared to determine the impact of distortions on dose distributions. No clinically relevant dose differences between distorted CT and original CT treatment plans were found. Mean dose differences were < 1.0% and < 0.5% at the planning target volume (PTV) for the head and neck, and prostate treatment plans, respectively. Strategies to reduce geometric distortions were also evaluated in Papers I and II. Using the vendor-supplied gradient non-linearity correction algorithm reduced overall distortions to less than half of the original value. A high acquisition bandwidth of 488 Hz/pixel (Paper I) and 488 Hz/mm (Paper II) kept the mean geometric distortions at the delineated structures below 1 mm. Furthermore, a patient-specific active shimming method implemented in Paper II significantly reduced the number of voxels with distortion shifts > 2 mm from 15.4% to 2.0%.B0 maps from patient-induced magnetic field inhomogeneities obtained through direct measurements and by simulations that used MR-generated synthetic CT (sCT) data were compared in Paper III. The validation showed excellent agreement between the simulated and measured B0 maps.In Paper IV, the ability of current QA methods to detect common MR image quality degradations under radiotherapy settings were investigated. By evaluating key image quality parameters, the QA protocols were found to be sensitive to some of the introduced degradations. However, image quality issues such as those caused by RF coil failures could not be adequately detected.In conclusion, this work has shown the feasibility of using MRI data for radiotherapy treatment planning as distortions resulted in a dose difference of less than 1% between distorted and undistorted images. The simulation software can be used to produce accurate B0 maps, which could then be used as the basis for the effective correction of patient-induced field inhomogeneity distortions and for the QA verification of sCT data. Furthermore, the analysis of the strengths and weaknesses in current QA tools for MRI in RT contribute to finding better methods to efficiently identify image quality errors.
  •  
7.
  •  
8.
  • Adjeiwaah, Mary, 1980-, et al. (author)
  • Sensitivity analysis of different quality assurance methods for magnetic resonance imaging in radiotherapy
  • 2020
  • In: Physics and Imaging in Radiation Oncology. - : Elsevier. - 2405-6316. ; 13, s. 21-27
  • Journal article (peer-reviewed)abstract
    • Background and purpose: There are currently no standard quality assurance (QA) methods for magnetic resonance imaging (MRI) in radiotherapy (RT). This work was aimed at evaluating the ability of two QA protocols to detect common events that affect quality of MR images under RT settings.Materials and methods: The American College of Radiology (ACR) MRI QA phantom was repeatedly scanned using a flexible coil and action limits for key image quality parameters were derived. Using an exploratory survey, issues that reduce MR image quality were identified. The most commonly occurring events were introduced as provocations to produce MR images with degraded quality. From these images, detection sensitivities of the ACR MRI QA protocol and a commercial geometric accuracy phantom were determined.Results: Machine-specific action limits for key image quality parameters set at mean±3σ" role="presentation" style="box-sizing: border-box; margin: 0px; padding: 0px; display: inline-block; line-height: normal; font-size: 16.2px; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;">mean±3σ were comparable with the ACR acceptable values. For the geometric accuracy phantom, provocations from uncorrected gradient nonlinearity effects and a piece of metal in the bore of the scanner resulted in worst distortions of 22.2 mm and 3.4 mm, respectively. The ACR phantom was sensitive to uncorrected signal variations, electric interference and a piece of metal in the bore of the scanner but could not adequately detect individual coil element failures.Conclusions: The ACR MRI QA phantom combined with the large field-of-view commercial geometric accuracy phantom were generally sensitive in identifying some common MR image quality issues. The two protocols when combined may provide a tool to monitor the performance of MRI systems in the radiotherapy environment.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 57
Type of publication
journal article (34)
other publication (9)
conference paper (7)
doctoral thesis (7)
Type of content
peer-reviewed (37)
other academic/artistic (20)
Author/Editor
Garpebring, Anders (46)
Nyholm, Tufve (21)
Brynolfsson, Patrik (14)
Karlsson, Mikael (12)
Bylund, Mikael (8)
Asklund, Thomas (8)
show more...
Yu, Jun, 1962- (8)
Adjeiwaah, Mary, 198 ... (5)
Wirestam, Ronnie (5)
Yu, Jun (5)
Malm, Jan, Professor ... (4)
Eklund, Anders, 1965 ... (4)
Nyholm, Tufve, Profe ... (3)
Wåhlin, Anders (3)
Liu, Xijia (3)
Johansson, Adam (3)
Sörensen, Jens (2)
Trygg, Johan (2)
Nilsson, David (2)
Lundman, Josef A. (2)
Söderström, Karin (2)
Jonsson, Joakim, PhD ... (2)
Thellenberg Karlsson ... (2)
Jonsson, Joakim H. (2)
Larsson, Anne (2)
Henriksson, Roger (2)
Hellström, Max (2)
Johansson, Lennart (2)
Hauksson, Jon (2)
Nyberg, Lars, 1966- (2)
Axelsson, Jan (2)
Zackrisson, Björn (1)
Jonsson, Joakim H., ... (1)
Garpebring, Anders, ... (1)
Ceberg, Sofie, PhD, ... (1)
Koskinen, Lars-Owe D ... (1)
Lundberg, Peter, Pro ... (1)
Birgander, Richard (1)
Wahlin, Anders (1)
Jönsson, Gustav (1)
Hansson Mild, Kjell (1)
Bayisa, Fekadu (1)
Zhou, Zhiyong, 1989- (1)
Bayisa, Fekadu L. (1)
Häggström, Ida (1)
Häggström, Ida, 1982 ... (1)
Schmidtlein, C. Ross (1)
Helbich, Thomas H. (1)
Birnefeld, Johan (1)
Hansson, William (1)
show less...
University
Umeå University (57)
Lund University (4)
Swedish University of Agricultural Sciences (2)
Uppsala University (1)
Language
English (57)
Research subject (UKÄ/SCB)
Medical and Health Sciences (40)
Natural sciences (23)
Engineering and Technology (13)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view