SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Gauss M.) srt2:(2015-2019)"

Search: WFRF:(Gauss M.) > (2015-2019)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Acosta Navarro, Juan C., et al. (author)
  • Future response of temperature and precipitation to reduced aerosol emissions as compared with increased greenhouse gas concentrations
  • 2017
  • In: Journal of Climate. - 0894-8755 .- 1520-0442. ; 30:3, s. 939-954
  • Journal article (peer-reviewed)abstract
    • Experiments with a climate model (NorESM1) were performed to isolate the effects of aerosol particles and greenhouse gases on surface temperature and precipitation in simulations of future climate. The simulations show that by 2025-2049, a reduction of aerosol emissions from fossil fuels following a maximum technically feasible reduction (MFR) scenario could lead to a global and Arctic warming of 0.26 K and 0.84 K, respectively; as compared with a simulation with fixed aerosol emissions at the level of 2005. If fossil fuel emissions of aerosols follow a current legislation emissions (CLE) scenario, the NorESM1 model simulations yield a non-significant change in global and Arctic average surface temperature as compared with aerosol emissions fixed at year 2005. The corresponding greenhouse gas effect following the RCP4.5 emission scenario leads to a global and Arctic warming of 0.35 K and 0.94 K, respectively.The model yields a marked annual average northward shift in the inter-tropical convergence zone with decreasing aerosol emissions and subsequent warming of the northern hemisphere. The shift is most pronounced in the MFR scenario but also visible in the CLE scenario. The modeled temperature response to a change in greenhouse gas concentrations is relatively symmetric between the hemispheres and there is no marked shift in the annual average position of the inter-tropical convergence zone. The strong reduction in aerosol emissions in MFR also leads to a net southward cross-hemispheric energy transport anomaly both in the atmosphere and ocean, and enhanced monsoon circulation in Southeast and East Asia causing an increase in precipitation over a large part of this region.
  •  
2.
  • Pommier, Matthieu, 1984, et al. (author)
  • Impact of regional climate change and future emission scenarios on surface O3 and PM2.5 over India
  • 2018
  • In: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 18:1, s. 103-127
  • Journal article (peer-reviewed)abstract
    • Eleven of the world's 20 most polluted cities are located in India and poor air quality is already a major public health issue. However, anthropogenic emissions are predicted to increase substantially in the short-term (2030) and medium-term (2050) futures in India, especially if no further policy efforts are made. In this study, the EMEP/MSC-W chemical transport model has been used to predict changes in surface ozone (O3) and fine particulate matter (PM 2.5 ) for India in a world of changing emissions and climate. The reference scenario (for present-day) is evaluated against surface-based measurements, mainly at urban stations. The evaluation has also been extended to other data sets which are publicly available on the web but without quality assurance. The evaluation shows high temporal correlation for O 3 (r = 0.9) and high spatial correlation for PM 2.5 (r = 0.5 and r = 0.8 depending on the data set) between the model results and observations. While the overall bias in PM 2.5 is small (lower than 6%), the model overestimates O 3 by 35%. The underestimation in NO x titration is probably the main reason for the O 3 overestimation in the model. However, the level of agreement can be considered satisfactory in this case of a regional model being evaluated against mainly urban measurements, and given the inevitable uncertainties in much of the input data. For the 2050s, the model predicts that climate change will have distinct effects in India in terms of O 3 pollution, with a region in the north characterized by a statistically significant increase by up to 4% (2 ppb) and one in the south by a decrease up to -3% (-1.4 ppb). This variation in O 3 is assumed to be partly related to changes in O 3 deposition velocity caused by changes in soil moisture and, over a few areas, partly also by changes in biogenic non-methane volatile organic compounds. Our calculations suggest that PM 2.5 will increase by up to 6.5% over the Indo-Gangetic Plain by the 2050s. The increase over India is driven by increases in dust, particulate organic matter (OM) and secondary inorganic aerosols (SIAs), which are mainly affected by the change in precipitation, biogenic emissions and wind speed. The large increase in anthropogenic emissions has a larger impact than climate change, causing O 3 and PM 2.5 levels to increase by 13 and 67% on average in the 2050s over the main part of India, respectively. By the 2030s, secondary inorganic aerosol is predicted to become the second largest contributor to PM 2.5 in India, and the largest in the 2050s, exceeding OM and dust.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view