SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Giesler Reiner Professor) srt2:(2020-2024)"

Sökning: WFRF:(Giesler Reiner Professor) > (2020-2024)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Myrstener, Maria, 1989- (författare)
  • The role of nutrients for stream ecosystem function in Arctic landscapes : drivers of productivity under environmental change
  • 2020
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Arctic and sub-Arctic freshwaters are currently experiencing substantial ecosystem changes due to the effects of global warming. Global warming effects on these freshwaters include increasing water temperatures, altered hydrological patterns, shifts in riparian vegetation and changes in the export of nutrients and carbon from soils. How these alterations to the physical and chemical hab-itat will affect stream ecosystem functioning largely depends on the responses by autotrophic pro-ducers and heterotrophic primary consumers. In this thesis, I explore how key stream ecosystem processes such as metabolic rates and nutrient cycling vary as a function of climate and landscape drivers, particularly light, temperature, and nutrient and carbon availability. To do this I leveraged natural gradients in vegetation, altitude, disturbance, and precipitation throughout the year in northern Sweden, as well as long- and short-term manipulations of nutrient availability. I also synthesized nutrient limitation data from lakes and streams to more holistically assess the re-sponses of boreal to Arctic freshwaters to changes in nutrients and climate variables. I found that nutrient availability, and especially nitrogen (N), is a main driver of spatial and temporal patterns of biofilm productivity, whole system metabolic rates, and short term N uptake in Arctic and sub-Arctic streams. I also show the importance of light and temperature constraints during early spring and late autumn, which set the limit for the aquatic growing season and annual productivity pat-terns. I present a first comparison of combined drivers of lake and stream responses to nutrient addition, which points to a shared importance of N and phosphorus (P) rather than light or tem-perature in driving the magnitude of nutrient limitation across these systems. Ultimately, I pro-pose that across large ranges in habitat variables, widespread nutrient limitation of Arctic fresh-waters constrain other climate change effects on ecosystem functions. The results presented in this thesis will promote better predictions of climate change effects on Boreal to Arctic stream ecosystem functioning.
  •  
2.
  • Haddad, Lenny, et al. (författare)
  • Small molecules dominate organic phosphorus in NaOH-EDTA extracts of soils as determined by 31P NMR
  • 2024
  • Ingår i: Science of the Total Environment. - : Elsevier. - 0048-9697 .- 1879-1026. ; 931
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the composition of organic phosphorus (P) in soils is relevant to various disciplines, from agricultural sciences to ecology. Despite past efforts, the precise nature of soil organic P remains an enigma, especially that of the orthophosphate monoesters, which dominate 31P NMR spectra of NaOH-EDTA extracts of soils worldwide. The monoester region often exhibits an unidentified, broad background believed to represent high molecular weight (MW) P. We investigated this monoester background using 1D 31P NMR and 2D 1H[sbnd]31P NMR, as well as 31P transverse relaxation (T2) measurements to calculate its intrinsic linewidth and relate it to MW. Analyzing seven soils from different ecosystems, we observed linewidths of 0.5 to 3 Hz for resolved monoester signals and the background, indicating that it consists of many, possibly >100, sharp signals associated with small (<1.5 kDa) organic P molecules. This result was further supported by 2D 1H[sbnd]31P NMR spectra revealing signals not resolved in the 1D spectra. Our findings align with 31P NMR studies detecting background signals in soil-free samples and modern evidence that alkali-soluble soil organic matter consists of self-assemblies of small organic compounds mimicking large molecules.
  •  
3.
  • Vincent, Andrea, et al. (författare)
  • Soil phosphorus forms show only minor changes across a 5000-year-old boreal wildfire chronosequence
  • 2022
  • Ingår i: Biogeochemistry. - : Springer. - 0168-2563 .- 1573-515X. ; 159, s. 15-32
  • Tidskriftsartikel (refereegranskat)abstract
    • Wildfire is the main disturbance in most boreal forests. In the prolonged absence of wildfire, ecosystem retrogression occurs, which is characterized by reduced productivity, plant biomass and belowground process rates. Previous evidence suggests that phosphorus (P) decreases during retrogression, but the mechanisms involved remain poorly understood. Here we use 1-D 31P and 2-D, 1H-31P NMR to characterize changes in humus P composition across a 5000 year post-fire chronosequence in northern Sweden, to understand why P availability declines during long term fire absence. Against expectations, humus P composition varied only modestly with increasing time since fire. Using a method to back-calculate the in situ soil organic P speciation, we found that it was dominated by biologically active compounds such as RNA (41%), phospholipids (28%) and DNA (22%). The concentration of DNA and pyrophosphate was 19% and 29% lower, respectively, on infrequently burnt than recently burnt islands, and the concentration of DNA, phospholipids and nucleotides was positively correlated with net primary productivity (NPP). Given the lack of evidence for the accumulation of “recalcitrant” P or a geochemical P sink, reductions in P availability during retrogression may be associated with impaired P cycling through slower decomposition rates, and increasing humus depth separating surface humus from P-rich mineral soil. Our findings align with observed negative relationships between NPP and organic P concentration across other chronosequences. They also suggest that changing fire regimes in the boreal zone could indirectly affect the P cycle through changes in NPP and soil microflora rather than through changes in humus P composition.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy