SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Grémillet David) srt2:(2018)"

Search: WFRF:(Grémillet David) > (2018)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Keogan, Katharine, et al. (author)
  • Global phenological insensitivity to shifting ocean temperatures among seabirds
  • 2018
  • In: Nature Climate Change. - : Springer Science and Business Media LLC. - 1758-678X .- 1758-6798. ; 8:4, s. 313-318
  • Journal article (peer-reviewed)abstract
    • Reproductive timing in many taxa plays a key role in determining breeding productivity(1), and is often sensitive to climatic conditions(2). Current climate change may alter the timing of breeding at different rates across trophic levels, potentially resulting in temporal mismatch between the resource requirements of predators and their prey(3). This is of particular concern for higher-trophic-level organisms, whose longer generation times confer a lower rate of evolutionary rescue than primary producers or consumers(4). However, the disconnection between studies of ecological change in marine systems makes it difficult to detect general changes in the timing of reproduction(5). Here, we use a comprehensive meta-analysis of 209 phenological time series from 145 breeding populations to show that, on average, seabird populations worldwide have not adjusted their breeding seasons over time (-0.020 days yr(-1)) or in response to sea surface temperature (SST) (-0.272 days degrees C-1) between 1952 and 2015. However, marked between-year variation in timing observed in resident species and some Pelecaniformes and Suliformes (cormorants, gannets and boobies) may imply that timing, in some cases, is affected by unmeasured environmental conditions. This limited temperature-mediated plasticity of reproductive timing in seabirds potentially makes these top predators highly vulnerable to future mismatch with lower-trophic-level resources(2).
  •  
2.
  • Monti, Flavio, et al. (author)
  • Migration distance affects stopover use but not travel speed : contrasting patterns between long- and short-distance migrating ospreys
  • 2018
  • In: Journal of Avian Biology. - : Wiley. - 0908-8857. ; 49:10
  • Journal article (peer-reviewed)abstract
    • The development of migratory behaviour is a continuous process which is not only determined by genes, but also moulded by individual differences based on life-history variations occurring at each ontogenetic stage. Assessing consistency and plasticity in migratory traits between long distance (LDM) and short distance migratory (SDM) populations within the same species that may express dissimilarities in the leeway of annual schedules is essential to understand the evolution and ontogeny of migratory strategies. We studied the migration strategies in autumn regarding flight speed and the use of stopovers (number and duration of stop-overs across the whole journey) at the intra-specific level, by tracking with GPS loggers the intercontinental migration of 43 adult and juvenile ospreys Pandion haliaetus from both LDM and SDM populations. LDM ospreys travelled distances five times larger than SDM ospreys, but their total migration speed was 2.4 times slower. While daily distance travelled did not differ between populations, the reduced total migration speed by LDMs was due to higher stopover use compared to SDM birds. SDM birds used more direct routes, crossing open sea at higher flight speeds, even though both populations largely benefitted from wind assistance across their journey. Across populations, adult birds travelled longer distances per day and displayed less sinuous migratory paths than juveniles, suggesting that migratory capabilities improve with age and experience of the bird. Overall, the time constraint related to total migration distance was not the main driver of the total migration speed, and other factors such as physiological needs to rest and refuel at stopover sites may play an important role. Our study underlines the importance of investigating variability in migration strategies in partially migratory species, for a better understanding of avian migratory ecology.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view