SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Graafsma H.) srt2:(2015-2019)"

Search: WFRF:(Graafsma H.) > (2015-2019)

  • Result 1-10 of 24
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Wunderer, C. B., et al. (author)
  • Detector developments at DESY
  • 2016
  • In: Journal of Synchrotron Radiation. - 0909-0495 .- 1600-5775. ; 23, s. 111-117
  • Journal article (peer-reviewed)abstract
    • With the increased brilliance of state-of-the-art synchrotron radiation sources and the advent of free-electron lasers (FELs) enabling revolutionary science with EUV to X-ray photons comes an urgent need for suitable photon imaging detectors. Requirements include high frame rates, very large dynamic range, single-photon sensitivity with low probability of false positives and (multi)-megapixels. At DESY, one ongoing development project-in collaboration with RAL/STFC, Elettra Sincrotrone Trieste, Diamond, and Pohang Accelerator Laboratory-is the CMOS-based soft X-ray imager PERCIVAL. PERCIVAL is a monolithic active-pixel sensor back-thinned to access its primary energy range of 250 eV to 1 keV with target efficiencies above 90%. According to preliminary specifications, the roughly 10 cm × 10 cm, 3.5k × 3.7k monolithic sensor will operate at frame rates up to 120 Hz (commensurate with most FELs) and use multiple gains within 27 μm pixels to measure 1 to ∼ 100000 (500 eV) simultaneously arriving photons. DESY is also leading the development of the AGIPD, a high-speed detector based on hybrid pixel technology intended for use at the European XFEL. This system is being developed in collaboration with PSI, University of Hamburg, and University of Bonn. The AGIPD allows singlepulse imaging at 4.5 MHz frame rate into a 352-frame buffer, with a dynamic range allowing single-photon detection and detection of more than 10000 photons at 12.4 keV in the same image. Modules of 65k pixels each are configured to make up (multi)megapixel cameras. This review describes the AGIPD and the PERCIVAL concepts and systems, including some recent results and a summary of their current status. It also gives a short overview over other FEL-relevant developments where the Photon Science Detector Group at DESY is involved. © 2016 International Union of Crystallography.
  •  
2.
  • Allahgholi, A., et al. (author)
  • The adaptive gain integrating pixel detector
  • 2016
  • In: Journal of Instrumentation. - 1748-0221. ; 11:2
  • Journal article (peer-reviewed)abstract
    • The adaptive gain integrating pixel detector (AGIPD) is a development of a collaboration between Deustsches Elektronen-Synchrotron (DESY), the Paul-Scherrer-Institute (PSI), the University of Hamburg and the University of Bonn. The detector is designed to cope with the demanding challenges of the European XFEL. Therefore it comes along with an adaptive gain stage allowing a high dynamic range, spanning from single photon sensitivity to 10(4) x 12.4 keV photons and 352 analogue memory cells per pixel. The aim of this report is to briefly explain the concepts of the AGIPD electronics and mechanics and then present recent experiments demonstrating the functionality of its key features.
  •  
3.
  • Allahgholi, A., et al. (author)
  • AGIPD, a high dynamic range fast detector for the European XFEL
  • 2015
  • In: Journal of Instrumentation. - 1748-0221. ; 10:1
  • Journal article (peer-reviewed)abstract
    • AGIPD-(Adaptive Gain Integrating Pixel Detector) is a hybrid pixel X-ray detector developed by a collaboration between Deutsches Elektronen-Synchrotron (DESY), Paul-Scherrer-Institut (PSI), University of Hamburg and the University of Bonn. The detector is designed to comply with the requirements of the European XFEL. The radiation tolerant Application Specific Integrated Circuit (ASIC) is designed with the following highlights: high dynamic range, spanning from single photon sensitivity up to 10(4) 12.5keV photons, achieved by the use of the dynamic gain switching technique using 3 possible gains of the charge sensitive preamplifier. In order to store the image data, the ASIC incorporates 352 analog memory cells per pixel, allowing also to store 3 voltage levels corresponding to the selected gain. It is operated in random-access mode at 4.5MHz frame rate. The data acquisition is done during the 99.4ms between the bunch trains. The AGIPD has a pixel area of 200 x 200 m m(2) and a 500 m m thick silicon sensor is used. The architecture principles were proven in different experiments and the ASIC characterization was done with a series of development prototypes. The mechanical concept was developed in the close contact with the XFEL beamline scientists and is now being manufactured. A first single module system was successfully tested at APS.
  •  
4.
  • Allahgholi, A., et al. (author)
  • Front end ASIC for AGIPD, a high dynamic range fast detector for the European XFEL
  • 2016
  • In: Journal of Instrumentation. - 1748-0221. ; 11:1
  • Journal article (peer-reviewed)abstract
    • The Adaptive Gain Integrating Pixel Detector (AGIPD) is a hybrid pixel X-ray detector for the European-XFEL. One of the detector's important parts is the radiation tolerant front end ASIC fulfilling the European-XFEL requirements: high dynamic range-from sensitivity to single 12.5keV-photons up to 104 photons. It is implemented using the dynamic gain switching technique with three possible gains of the charge sensitive preamplifier. Each pixel can store up to 352 images in memory operated in random-access mode at >= 4.5MHz frame rate. An external vetoing may be applied to overwrite unwanted frames.
  •  
5.
  • Allahgholi, A., et al. (author)
  • The AGIPD 1.0 ASIC : Random access high frame rate, high dynamic range X-ray camera readout for the European XFEL
  • 2015
  • In: 2015 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2015. - : Institute of Electrical and Electronics Engineers (IEEE). - 9781467398626
  • Conference paper (peer-reviewed)abstract
    • The European XFEL is an extremely brilliant Free Electron Laser Source with a very demanding pulse structure: trains of 2700 X-Ray pulses are repeated at 10 Hz. The pulses inside the train are spaced by 220 ns and each one contains up to 1012 photons of 12.4 keV, while being ≤ 100 fs in length. AGIPD (Adaptive Gain Integrating Pixel Detector) is a hybrid 1M-pixel detector developed by DESY, PSI, and the Universities of Bonn and Hamburg to cope with these properties. Thus the readout ASIC has to provide not only single photon sensitivity and a dynamic range ≳ 104 photons/pixel in the same image but also a memory for as many images of a pulse train as possible for delayed readout prior to the next train. The AGIPD 1.0 ASIC uses a 130 nm CMOS technology and radiation tolerant techniques to withstand the radiation damage incurred by the high impinging photon flux. Each ASIC contains 64 × 64 pixels of 200μmχ200μm. The circuit of each pixel contains a charge sensitive preamplifier with threefold switchable gain, a discriminator for an adaptive gain selection, and a correlated double sampling (CDS) stage to remove reset and low-frequency noise components. The output of the CDS, as well as the dynamically selected gain is sampled in a capacitor-based analogue memory for 352 samples, which occupies about 80% of a pixels area. For readout each pixel features a charge sensitive buffer. A control circuit with a command based interface provides random access to the memory and controls the row-wise readout of the data via multiplexers to four differential analogue ports. The AGIPD 1.0 full scale ASIC has been received back from the foundry in fall of 2013. Since then it has been extensively characterised also with a sensor as a single chip and in 2 × 8-chip modules for the AGIPD 1 Mpix detector. We present the design of the AGIPD 1.0 ASIC along with supporting results, also from beam tests at PETRA III and APS, and show changes incorporated in the recently taped out AGIPD 1.1 ASIC upgrade.
  •  
6.
  • Correa, J., et al. (author)
  • On the Charge Collection Efficiency of the PERCIVAL Detector
  • 2016
  • In: Journal of Instrumentation. - : IOP. - 1748-0221. ; 11:12
  • Journal article (peer-reviewed)abstract
    • The PERCIVAL soft X-ray imager is being developed by DESY, RAL, Elettra, DLS, and PAL to address the challenges at high brilliance Light Sources such as new-generation Synchrotrons and Free Electron Lasers. Typical requirements for detector systems at these sources are high frame rates, large dynamic range, single-photon counting capability with low probability of false positives, high quantum efficiency, and (multi)-mega-pixel arrangements. PERCIVAL is a monolithic active pixel sensor, based on CMOS technology. It is designed for the soft X-ray regime and, therefore, it is post-processed in order to achieve high quantum efficiency in its primary energy range (250 eV to 1 keV) . This work will report on the latest experimental results on charge collection efficiency obtained for multiple back-side-illuminated test sensors during two campaigns, at the P04 beam-line at PETRA III, and the CiPo beam-line at Elettra, spanning most of the primary energy range as well as testing the performance for photon-energies below 250 eV . In addition, XPS surface analysis was used to cross-check the obtained results.
  •  
7.
  • Correa, J., et al. (author)
  • The PERCIVAL soft X-ray Detector
  • 2018
  • In: 2018 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2018 - Proceedings. - : Institute of Electrical and Electronics Engineers (IEEE). - 9781538684948
  • Conference paper (peer-reviewed)abstract
    • The PERCIVAL collaboration to develop a soft X-ray imager able to address the challenges of high brilliance light sources, such as new-generation synchrotrons and Free Electron Lasers, has reached one of its major milestones: a full 2-MegaPixel (P2M) system (uninterrupted 4 × 4 cm2 active area) has already seen its first light.Smaller prototypes of the device, a monolithic active pixel sensor based on CMOS technology, have already been fully characterised, and have demonstrated high frame rate, large dynamic range, and relatively high quantum efficiency.The PERCIVAL modular layout allows for clover-leaf like arrangement of up to four P2M systems. Moreover, it will be post-processed in order to achieve a high quantum efficiency in its primary energy range (250 eV to 1 keV).We will present the P2M system, its status and newest results, bring these in context with achieved prototype performance, and outline future steps. 
  •  
8.
  • Hansen, K., et al. (author)
  • Qualification and Integration Aspects of the DSSC Mega-Pixel X-Ray Imager
  • 2019
  • In: IEEE Transactions on Nuclear Science. - : Institute of Electrical and Electronics Engineers Inc.. - 0018-9499 .- 1558-1578. ; 66:8, s. 1966-1975
  • Journal article (peer-reviewed)abstract
    • The focal-plane module is the key component of the DEPFET sensor with signal compression (DSSC) mega-pixel X-ray imager and handles the data of 128 ×512 pixels. We report on assembly-related aspects, discuss the experimental investigation of bonding behavior of different adhesives, and present the metrology and electrical test results of the production. The module consists of two silicon (Si) sensors with flip-chip connected CMOS integrated circuits, a Si-heat spreader, a low-temperature co-fired ceramics circuit board, and a molybdenum frame. A low-modulus urethane-film adhesive fills the gaps between on-board components and frame. It is also used between board and heat spreader, reduces the misfit strain, and minimizes the module warpage very efficiently. The heat spreader reduces the on-board temperature gradient by about one order of magnitude. The placement precision of the bare modules to each other and the frame is characterized by a standard deviation below 10 and 65 μ m, respectively. The displacement due to the in-plane rotation and vertical tilting errors remains below 80 and 50 μm, respectively. The deflection of the sensor plane shows a mean value below 30 μm with a standard deviation below 15 μm. Less than 4% of the application-specified integrated circuits (ASICs) exhibit a malfunction. More than two-thirds of the sensors have a maximum leakage current below 1 μA. © 1963-2012 IEEE.
  •  
9.
  • Khromova, A., et al. (author)
  • Report on recent results of the PERCIVAL soft X-ray imager
  • 2016
  • In: Journal of Instrumentation. - : IOP. - 1748-0221. ; 11:November
  • Journal article (peer-reviewed)abstract
    • The PERCIVAL (Pixelated Energy Resolving CMOS Imager, Versatile And Large) soft X-ray 2D imaging detector is based on stitched, wafer-scale sensors possessing a thick epi-layer, which together with back-thinning and back-side illumination yields elevated quantum efficiency in the photon energy range of 125–1000 eV. Main application fields of PERCIVAL are foreseen in photon science with FELs and synchrotron radiation. This requires high dynamic range up to 105 ph @ 250 eV paired with single photon sensitivity with high confidence at moderate frame rates in the range of 10–120 Hz. These figures imply the availability of dynamic gain switching on a pixel-by-pixel basis and a highly parallel, low noise analog and digital readout, which has been realized in the PERCIVAL sensor layout. Different aspects of the detector performance have been assessed using prototype sensors with different pixel and ADC types. This work will report on the recent test results performed on the newest chip prototypes with the improved pixel and ADC architecture. For the target frame rates in the 10–120 Hz range an average noise floor of 14e− has been determined, indicating the ability of detecting single photons with energies above 250 eV. Owing to the successfully implemented adaptive 3-stage multiple-gain switching, the integrated charge level exceeds 4 centerdot 106 e− or 57000 X-ray photons at 250 eV per frame at 120 Hz. For all gains the noise level remains below the Poisson limit also in high-flux conditions. Additionally, a short overview over the updates on an oncoming 2 Mpixel (P2M) detector system (expected at the end of 2016) will be reported.
  •  
10.
  • Marras, A., et al. (author)
  • Experimental characterization of the PERCIVAL soft X-ray detector
  • 2016
  • In: 2015 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2015. - : Institute of Electrical and Electronics Engineers (IEEE). - 9781467398626
  • Conference paper (other academic/artistic)abstract
    • Considerable interest has been manifested for the use of high-brilliance X-ray synchrotron sources and X-ray Free-Electron Lasers for the investigation of samples.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 24

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view