SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Hamon M) srt2:(2020-2023)"

Search: WFRF:(Hamon M) > (2020-2023)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Charpin, Laurent, et al. (author)
  • Ageing and air leakage assessment of a nuclear reactor containment mock-up : VERCORS 2nd benchmark
  • 2021
  • In: Nuclear Engineering and Design. - : Elsevier BV. - 0029-5493. ; 377
  • Journal article (peer-reviewed)abstract
    • Electricité de France (EDF) operates a large fleet of nuclear reactors and is responsible for demonstrating the safety of facilities, including concrete containment buildings (CCB), which are non-replaceable components. The leak-tightness of CCBs is assessed every 10 years during integrated leak-rate tests (IRLT). For double-wall containments, which have no metallic liners, the leak-tightness is strongly influenced by the degree of cracking of concrete and opening of the cracks, which mostly depends on (a) the prestress decrease due to the delayed strains of concrete and to a lesser extent due to relaxation of tendons steel, and (b) the saturation degree of the Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation concrete wall. Therefore, to optimize the maintenance programs on CCBs, it is important to predict the evolution of drying, creep and shrinkage strains of concrete to be able to correctly assess the pre-stress losses, and finally the air leak-tightness at a structural level during pressure tests or under accidental loadings. To improve our understanding and identify the best modelling practices on this issue, a large experimental program called VERCORS was launched in 2014. VERCORS is a 1/3 mock-up of a 1300 MWe nuclear reactor CCB. It has been widely instrumented, and its concrete thoroughly characterized. A specific attention has been paid to ensure it is consistent with real CBBs features in EDF's nuclear fleet. To complement its internal R&D efforts, EDF decided to associate external partners to this program. One of the means for this is the organization of benchmarks, where all teams are given data and information about the mock-up and are asked to quantitatively predict its behaviour. The present paper reports the organization and findings of the 2nd benchmark which was organized in 2018 and gathered several international teams around the same objective: improve the confidence in the modelling of structural behaviour as well as the leak-tightness of concrete in containment walls under pressure test loading. The benchmark has shown once again that predicting the mechanical and leakage behaviour of containment buildings is a difficult task. The benchmark also yielded interesting information about the possibility to use spatially reduced models to predict the mechanical behaviour and leakage and underlined the fact that more research must be done to better predict the localization of cracks and leakage. Some lessons have been learnt for the next benchmark: EDF will ask to clarify further the calibration methods, will give more data (including drying, creep and shrinkage at different temperatures and moisture measurements in the mock-up), and will help the participants using local leakage data by projecting the raw measurements on a regular grid, so that the local leakage models can be improved.
  •  
2.
  • Ericson, Marten, et al. (author)
  • Architecture landscape
  • 2023
  • In: Towards Sustainable and Trustworthy 6G: Challenges, Enablers, and Architectural Design. - 9781638282396 ; , s. 11-39
  • Book chapter (other academic/artistic)abstract
    • The network architecture evolution journey will carry on in the years ahead, driving a large scale adoption of 5th Generation (5G) and 5G-Advanced use cases with significantly decreased deployment and operational costs, and enabling new and innovative use-case-driven solutions towards 6th Generation (6G) with higher economic and societal values. The goal of this chapter, thus, is to present the envisioned societal impact, use cases and the End-to-End (E2E) 6G architecture. The E2E 6G architecture includes summarization of the various technical enablers as well as the system and functional views of the architecture.
  •  
3.
  • Flechard, Chris R., et al. (author)
  • Carbon-nitrogen interactions in European forests and semi-natural vegetation - Part 1: Fluxes and budgets of carbon, nitrogen and greenhouse gases from ecosystem monitoring and modelling
  • 2020
  • In: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 17:6, s. 1583-1620
  • Journal article (peer-reviewed)abstract
    • The impact of atmospheric reactive nitrogen (N-r) deposition on carbon (C) sequestration in soils and biomass of unfertilized, natural, semi-natural and forest ecosystems has been much debated. Many previous results of this dC/dN response were based on changes in carbon stocks from periodical soil and ecosystem inventories, associated with estimates of N-r deposition obtained from large-scale chemical transport models. This study and a companion paper (Flechard et al., 2020) strive to reduce uncertainties of N effects on C sequestration by linking multi-annual gross and net ecosystem productivity estimates from 40 eddy covariance flux towers across Europe to local measurement-based estimates of dry and wet N-r deposition from a dedicated collocated monitoring network. To identify possible ecological drivers and processes affecting the interplay between C and N-r inputs and losses, these data were also combined with in situ flux measurements of NO, N2O and CH4 fluxes; soil NO3- leaching sampling; and results of soil incubation experiments for N and greenhouse gas (GHG) emissions, as well as surveys of available data from online databases and from the literature, together with forest ecosystem (BAS-FOR) modelling. Multi-year averages of net ecosystem productivity (NEP) in forests ranged from -70 to 826 gCm(-2) yr(-1) at total wet + dry inorganic N-r deposition rates (N-dep) of 0.3 to 4.3 gNm(-2) yr(-1) and from -4 to 361 g Cm-2 yr(-1) at N-dep rates of 0.1 to 3.1 gNm(-2) yr(-1) in short semi-natural vegetation (moorlands, wetlands and unfertilized extensively managed grasslands). The GHG budgets of the forests were strongly dominated by CO2 exchange, while CH4 and N2O exchange comprised a larger proportion of the GHG balance in short semi-natural vegetation. Uncertainties in elemental budgets were much larger for nitrogen than carbon, especially at sites with elevated N-dep where N-r leaching losses were also very large, and compounded by the lack of reliable data on organic nitrogen and N-2 losses by denitrification. Nitrogen losses in the form of NO, N2O and especially NO3- were on average 27%(range 6 %-54 %) of N-dep at sites with N-dep < 1 gNm(-2) yr(-1) versus 65% (range 35 %-85 %) for N-dep > 3 gNm(-2) yr(-1). Such large levels of N-r loss likely indicate that different stages of N saturation occurred at a number of sites. The joint analysis of the C and N budgets provided further hints that N saturation could be detected in altered patterns of forest growth. Net ecosystem productivity increased with N-r deposition up to 2-2.5 gNm(-2) yr(-1), with large scatter associated with a wide range in carbon sequestration efficiency (CSE, defined as the NEP/GPP ratio). At elevated N-dep levels (> 2.5 gNm(-2) yr(-1)), where inorganic N-r losses were also increasingly large, NEP levelled off and then decreased. The apparent increase in NEP at low to intermediate N-dep levels was partly the result of geographical cross-correlations between N-dep and climate, indicating that the actual mean dC/dN response at individual sites was significantly lower than would be suggested by a simple, straightforward regression of NEP vs. N-dep.
  •  
4.
  • Selva, Esteban, et al. (author)
  • Towards a 6G Embedding Sustainability
  • 2023
  • In: 2023 IEEE International Conference on Communications Workshops: Sustainable Communications for Renaissance, ICC Workshops 2023. ; , s. 1588-1593
  • Conference paper (peer-reviewed)abstract
    • From its conception, 6G is being designed with a particular focus on sustainability. The general philosophy of the H2020 Hexa-X project work on sustainability in 6G is based on two principles: to reduce direct negative life cycle impacts of 6G systems as much as possible (Sustainable 6G) and to analyze use cases that maximize positive environmental, social, and economic effects in other sectors of society (6G for Sustainability or its enablement effect). To apply this philosophy, Hexa-X is designing 6G with three sustainability objectives in mind: to enable the reduction of emissions in 6G-powered sectors of society, to reduce the total cost of ownership and to improve energy efficiency. This paper describes these objectives, their associated KPIs and quantitative targets, and the levers to reach them. Furthermore, to maximize the positive effects of 6G through the enablement effect, a link between 6G and the United Nations' Sustainable Development Goals (UN SDGs) framework is proposed and illustrated by Hexa-X use case families.
  •  
5.
  • Uusitalo, Mikko A., et al. (author)
  • 6G Vision, Value, Use Cases and Technologies from European 6G Flagship Project Hexa-X
  • 2021
  • In: IEEE Access. - 2169-3536 .- 2169-3536. ; 9, s. 160004-160020
  • Journal article (peer-reviewed)abstract
    • While 5G is being deployed and the economy and society begin to reap the associated benefits, the research and development community starts to focus on the next, 6th Generation (6G) of wireless communications. Although there are papers available in the literature on visions, requirements and technical enablers for 6G from various academic perspectives, there is a lack of joint industry and academic work towards 6G. In this paper a consolidated view on vision, values, use cases and key enabling technologies from leading industry stakeholders and academia is presented. The authors represent the mobile communications ecosystem with competences spanning hardware, link layer and networking aspects, as well as standardization and regulation. The second contribution of the paper is revisiting and analyzing the key concurrent initiatives on 6G. A third contribution of the paper is the identification and justification of six key 6G research challenges: (i) “connecting”, in the sense of empowering, exploiting and governing, intelligence; (ii) realizing a network of networks, i.e., leveraging on existing networks and investments, while reinventing roles and protocols where needed; (iii) delivering extreme experiences, when/where needed; (iv) (environmental, economic, social) sustainability to address the major challenges of current societies; (v) trustworthiness as an ingrained fundamental design principle; (vi) supporting cost-effective global service coverage. A fourth contribution is a comprehensive specification of a concrete first-set of industry and academia jointly defined use cases for 6G, e.g., massive twinning, cooperative robots, immersive telepresence, and others. Finally, the anticipated evolutions in the radio, network and management/orchestration domains are discussed.
  •  
6.
  • Uusitalo, Mikko A., et al. (author)
  • Hexa-X: The european 6G flagship project
  • 2021
  • In: 2021 Joint European Conference on Networks and Communications and 6G Summit, EuCNC/6G Summit 2021. ; , s. 580-585
  • Conference paper (peer-reviewed)abstract
    • Hexa-X will pave the way to the next generation of wireless networks (Hexa) by explorative research (X). The Hexa-X vision is to connect human, physical, and digital worlds with a fabric of sixth generation (6G) key enablers. The vision is driven by the ambition to contribute to objectives of growth, global sustainability, trustworthiness, and digital inclusion. Key 6G value indicators and use cases are defined against the background of technology push, society and industry pull as well as objectives of technology sovereignty. Key areas of research have been formulated accordingly to include connecting intelligence, network of networks, sustainability, global service coverage, extreme experience, and trustworthiness. Critical technology enablers for 6G are developed in the project including, sub-THz transceiver technologies, accurate stand-alone positioning and radio-based imaging, improved radio performance, artificial intelligence (AI) / machine learning (ML) inspired radio access network (RAN) technologies, future network architectures and special purpose solutions including future ultra-reliable low-latency communication (URLLC) schemes. Besides technology enablers, early trials will be carried out to help assess viability and performance aspects of the key technology enablers. The 6G Hexa-X project is integral part of European and global research effort to help define the best possible next generation of networks.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view