SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Hamsten R) srt2:(2020-2024)"

Search: WFRF:(Hamsten R) > (2020-2024)

  • Result 1-10 of 13
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Mishra, A., et al. (author)
  • Stroke genetics informs drug discovery and risk prediction across ancestries
  • 2022
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 611, s. 115-123
  • Journal article (peer-reviewed)abstract
    • Previous genome-wide association studies (GWASs) of stroke - the second leading cause of death worldwide - were conducted predominantly in populations of European ancestry(1,2). Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis(3), and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach(4), we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry(5). Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries.
  •  
2.
  • Lagou, Vasiliki, et al. (author)
  • Sex-dimorphic genetic effects and novel loci for fasting glucose and insulin variability
  • 2021
  • In: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 12:1
  • Journal article (peer-reviewed)abstract
    • Differences between sexes contribute to variation in the levels of fasting glucose and insulin. Epidemiological studies established a higher prevalence of impaired fasting glucose in men and impaired glucose tolerance in women, however, the genetic component underlying this phenomenon is not established. We assess sex-dimorphic (73,089/50,404 women and 67,506/47,806 men) and sex-combined (151,188/105,056 individuals) fasting glucose/fasting insulin genetic effects via genome-wide association study meta-analyses in individuals of European descent without diabetes. Here we report sex dimorphism in allelic effects on fasting insulin at IRS1 and ZNF12 loci, the latter showing higher RNA expression in whole blood in women compared to men. We also observe sex-homogeneous effects on fasting glucose at seven novel loci. Fasting insulin in women shows stronger genetic correlations than in men with waist-to-hip ratio and anorexia nervosa. Furthermore, waist-to-hip ratio is causally related to insulin resistance in women, but not in men. These results position dissection of metabolic and glycemic health sex dimorphism as a steppingstone for understanding differences in genetic effects between women and men in related phenotypes.
  •  
3.
  •  
4.
  •  
5.
  • Broadaway, K Alaine, et al. (author)
  • Loci for insulin processing and secretion provide insight into type 2 diabetes risk.
  • 2023
  • In: American Journal of Human Genetics. - : Elsevier. - 0002-9297 .- 1537-6605. ; 110:2, s. 284-299
  • Journal article (peer-reviewed)abstract
    • Insulin secretion is critical for glucose homeostasis, and increased levels of the precursor proinsulin relative to insulin indicate pancreatic islet beta-cell stress and insufficient insulin secretory capacity in the setting of insulin resistance. We conducted meta-analyses of genome-wide association results for fasting proinsulin from 16 European-ancestry studies in 45,861 individuals. We found 36 independent signals at 30 loci (p value < 5 × 10-8), which validated 12 previously reported loci for proinsulin and ten additional loci previously identified for another glycemic trait. Half of the alleles associated with higher proinsulin showed higher rather than lower effects on glucose levels, corresponding to different mechanisms. Proinsulin loci included genes that affect prohormone convertases, beta-cell dysfunction, vesicle trafficking, beta-cell transcriptional regulation, and lysosomes/autophagy processes. We colocalized 11 proinsulin signals with islet expression quantitative trait locus (eQTL) data, suggesting candidate genes, including ARSG, WIPI1, SLC7A14, and SIX3. The NKX6-3/ANK1 proinsulin signal colocalized with a T2D signal and an adipose ANK1 eQTL signal but not the islet NKX6-3 eQTL. Signals were enriched for islet enhancers, and we showed a plausible islet regulatory mechanism for the lead signal in the MADD locus. These results show how detailed genetic studies of an intermediate phenotype can elucidate mechanisms that may predispose one to disease.
  •  
6.
  •  
7.
  • Ahluwalia, T. S., et al. (author)
  • Genome-wide association study of circulating interleukin 6 levels identifies novel loci
  • 2021
  • In: Human molecular genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 30:5, s. 393-409
  • Journal article (peer-reviewed)abstract
    • Interleukin 6 (IL-6) is a multifunctional cytokine with both pro- and anti-inflammatory properties with a heritability estimate of up to 61%. The circulating levels of IL-6 in blood have been associated with an increased risk of complex disease pathogenesis. We conducted a two-staged, discovery and replication meta genome-wide association study (GWAS) of circulating serum IL-6 levels comprising up to 67428 (n(discovery)=52654 and n(replication)=14774) individuals of European ancestry. The inverse variance fixed effects based discovery meta-analysis, followed by replication led to the identification of two independent loci, IL1F10/IL1RN rs6734238 on chromosome (Chr) 2q14, (P-combined=1.8x10(-11)), HLA-DRB1/DRB5 rs660895 on Chr6p21 (P-combined=1.5x10(-10)) in the combined meta-analyses of all samples. We also replicated the IL6R rs4537545 locus on Chr1q21 (P-combined=1.2x10(-122)). Our study identifies novel loci for circulating IL-6 levels uncovering new immunological and inflammatory pathways that may influence IL-6 pathobiology.
  •  
8.
  • Bonomi, A, et al. (author)
  • Analysis of the genetic variants associated with circulating levels of sgp130. Results from the IMPROVE study
  • 2020
  • In: Genes and immunity. - : Springer Science and Business Media LLC. - 1476-5470 .- 1466-4879. ; 21:2, s. 100-108
  • Journal article (peer-reviewed)abstract
    • The genes regulating circulating levels of soluble gp130 (sgp130), the antagonist of the inflammatory response in atherosclerosis driven by interleukin 6, are largely unknown. Aims of the present study were to identify genetic loci associated with circulating sgp130 and to explore the potential association between variants associated with sgp130 and markers of subclinical atherosclerosis. The study is based on IMPROVE (n = 3703), a cardiovascular multicentre study designed to investigate the determinants of carotid intima media thickness, a measure of subclinical atherosclerosis. Genomic DNA was genotyped by the CardioMetaboChip and ImmunoChip. About 360,842 SNPs were tested for association with log-transformed sgp130, using linear regression adjusted for age, gender, and population stratification using PLINK v1.07. A p value of 1 × 10−5 was chosen as threshold for significance value. In an exploratory analysis, SNPs associated with sgp130 were tested for association with c-IMT measures. We identified two SNPs significantly associated with sgp130 levels and 24 showing suggestive association with sgp130 levels. One SNP (rs17688225) on chromosome 14 was positively associated with sgp130 serum levels (β = 0.03 SE = 0.007, p = 4.77 × 10−5) and inversely associated with c-IMT (c-IMTmean–maxβ = −0.001 SE = 0.005, p = 0.0342). Our data indicate that multiple loci regulate sgp130 levels and suggest a possible common pathway between sgp130 and c-IMT measures.
  •  
9.
  • van Zuydam, Natalie R., et al. (author)
  • Genetic Predisposition to Coronary Artery Disease in Type 2 Diabetes Mellitus
  • 2020
  • In: Circulation. - : Lippincott Williams & Wilkins. - 2574-8300. ; 13:6, s. 640-648
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Coronary artery disease (CAD) is accelerated in subjects with type 2 diabetes mellitus (T2D).METHODS: To test whether this reflects differential genetic influences on CAD risk in subjects with T2D, we performed a systematic assessment of genetic overlap between CAD and T2D in 66 643 subjects (27 708 with CAD and 24 259 with T2D). Variants showing apparent association with CAD in stratified analyses or evidence of interaction were evaluated in a further 117 787 subjects (16 694 with CAD and 11 537 with T2D).RESULTS: None of the previously characterized CAD loci was found to have specific effects on CAD in T2D individuals, and a genome-wide interaction analysis found no new variants for CAD that could be considered T2D specific. When we considered the overall genetic correlations between CAD and its risk factors, we found no substantial differences in these relationships by T2D background.CONCLUSIONS: This study found no evidence that the genetic architecture of CAD differs in those with T2D compared with those without T2D.
  •  
10.
  • Folkersen, Lasse, et al. (author)
  • Genomic and drug target evaluation of 90 cardiovascular proteins in 30,931 individuals.
  • 2020
  • In: Nature metabolism. - : Springer Science and Business Media LLC. - 2522-5812. ; 2:10, s. 1135-1148
  • Journal article (peer-reviewed)abstract
    • Circulating proteins are vital in human health and disease and are frequently used as biomarkers for clinical decision-making or as targets for pharmacological intervention. Here, we map and replicate protein quantitative trait loci (pQTL) for 90 cardiovascular proteins in over 30,000 individuals, resulting in 451 pQTLs for 85 proteins. For each protein, we further perform pathway mapping to obtain trans-pQTL gene and regulatory designations. We substantiate these regulatory findings with orthogonal evidence for trans-pQTLs using mouse knockdown experiments (ABCA1 and TRIB1) and clinical trial results (chemokine receptors CCR2 and CCR5), with consistent regulation. Finally, we evaluate known drug targets, and suggest new target candidates or repositioning opportunities using Mendelian randomization. This identifies 11 proteins with causal evidence of involvement in human disease that have not previously been targeted, including EGF, IL-16, PAPPA, SPON1, F3, ADM, CASP-8, CHI3L1, CXCL16, GDF15 and MMP-12. Taken together, these findings demonstrate the utility of large-scale mapping of the genetics of the proteome and provide a resource for future precision studies of circulating proteins in human health.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view