SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Hayashida M.) srt2:(2015-2019)"

Search: WFRF:(Hayashida M.) > (2015-2019)

  • Result 1-10 of 25
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Aartsen, M. G., et al. (author)
  • Very high-energy gamma-ray follow-up program using neutrino triggers from IceCube
  • 2016
  • In: Journal of Instrumentation. - 1748-0221. ; 11
  • Journal article (peer-reviewed)abstract
    • We describe and report the status of a neutrino-triggered program in IceCube that generates real-time alerts for gamma-ray follow-up observations by atmospheric-Cherenkov telescopes (MAGIC and VERITAS). While IceCube is capable of monitoring the whole sky continuously, high-energy gamma-ray telescopes have restricted fields of view and in general are unlikely to be observing a potential neutrino-flaring source at the time such neutrinos are recorded. The use of neutrino-triggered alerts thus aims at increasing the availability of simultaneous multi-messenger data during potential neutrino flaring activity, which can increase the discovery potential and constrain the phenomenological interpretation of the high-energy emission of selected source classes (e. g. blazars). The requirements of a fast and stable online analysis of potential neutrino signals and its operation are presented, along with first results of the program operating between 14 March 2012 and 31 December 2015.
  •  
3.
  • Acero, F., et al. (author)
  • Prospects for Cherenkov Telescope Array Observations of the Young Supernova Remnant RX J1713.7-3946
  • 2017
  • In: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 840:2
  • Journal article (peer-reviewed)abstract
    • We perform simulations for future Cherenkov Telescope Array (CTA) observations of RX J1713.7-3946, a young supernova remnant (SNR) and one of the brightest sources ever discovered in very high energy (VHE) gamma rays. Special attention is paid to exploring possible spatial (anti) correlations of gamma rays with emission at other wavelengths, in particular X-rays and CO/H I emission. We present a series of simulated images of RX J1713.7-3946 for CTA based on a set of observationally motivated models for the gamma-ray emission. In these models, VHE gamma rays produced by high-energy electrons are assumed to trace the nonthermal X-ray emission observed by XMM-Newton, whereas those originating from relativistic protons delineate the local gas distributions. The local atomic and molecular gas distributions are deduced by the NANTEN team from CO and H I observations. Our primary goal is to show how one can distinguish the emission mechanism(s) of the gamma rays (i.e., hadronic versus leptonic, or a mixture of the two) through information provided by their spatial distribution, spectra, and time variation. This work is the first attempt to quantitatively evaluate the capabilities of CTA to achieve various proposed scientific goals by observing this important cosmic particle accelerator.
  •  
4.
  • Mayer, Manuel, et al. (author)
  • Constraints on particle acceleration in SS433/W50 from MAGIC and HESS observations
  • 2018
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 612
  • Journal article (peer-reviewed)abstract
    • Context. The large jet kinetic power and non-thermal processes occurring in the microquasar SS 433 make this source a good candidate for a very high-energy (VHE) gamma-ray emitter. Gamma-ray fluxes above the sensitivity limits of current Cherenkov telescopes have been predicted for both the central X-ray binary system and the interaction regions of SS 433 jets with the surrounding W50 nebula. Non-thermal emission at lower energies has been previously reported, indicating that efficient particle acceleration is taking place in the system. Aims. We explore the capability of SS 433 to emit VHE gamma rays during periods in which the expected flux attenuation due to periodic eclipses (P-orb similar to 13.1 days) and precession of the circumstellar disk (P-pre similar to 162 days) periodically covering the central binary system is expected to be at its minimum. The eastern and western SS 433/W50 interaction regions are also examined using the whole data set available. We aim to constrain some theoretical models previously developed for this system with our observations. Methods. We made use of dedicated observations from the Major Atmospheric Gamma Imaging Cherenkov telescopes (MAGIC) and High Energy Spectroscopic System (H.E.S.S.) of SS 433 taken from 2006 to 2011. These observation were combined for the first time and accounted for a total effective observation time of 16.5 h, which were scheduled considering the expected phases of minimum absorption of the putative VHE emission. Gamma-ray attenuation does not affect the jet/medium interaction regions. In this case, the analysis of a larger data set amounting to similar to 40-80 h, depending on the region, was employed. Results. No evidence of VHE gamma-ray emission either from the central binary system or from the eastern/western interaction regions was found. Upper limits were computed for the combined data set. Differential fluxes from the central system are found to be less than or similar to 10(-12)-10(-13) TeV-1 cm(-2) s(-1) in an energy interval ranging from similar to few x 100 GeV to similar to few TeV. Integral flux limits down to similar to 10(-12)-10(-13) ph cm(-2) s(-1) and similar to 10(-13)-10(-14) ph cm(-2) s(-1) are obtained at 300 and 800 GeV, respectively. Our results are used to place constraints on the particle acceleration fraction at the inner jet regions and on the physics of the jet/medium interactions. Conclusions. Our findings suggest that the fraction of the jet kinetic power that is transferred to relativistic protons must be relatively small in SS 433, q(p) <= 2.5 x 10(-5), to explain the lack of TeV and neutrino emission from the central system. At the SS 433/W50 interface, the presence of magnetic fields greater than or similar to 10 mu G is derived assuming a synchrotron origin for the observed X-ray emission. This also implies the presence of high-energy electrons with E-e up to 50 TeV, preventing an efficient production of gamma-ray fluxes in these interaction regions.
  •  
5.
  • Acharyya, A., et al. (author)
  • Monte Carlo studies for the optimisation of the Cherenkov Telescope Array layout
  • 2019
  • In: Astroparticle physics. - : Elsevier. - 0927-6505 .- 1873-2852. ; 111, s. 35-53
  • Journal article (peer-reviewed)abstract
    • The Cherenkov Telescope Array (CTA) is the major next-generation observatory for ground-based veryhigh-energy gamma-ray astronomy. It will improve the sensitivity of current ground-based instruments by a factor of five to twenty, depending on the energy, greatly improving both their angular and energy resolutions over four decades in energy (from 20 GeV to 300 TeV). This achievement will be possible by using tens of imaging Cherenkov telescopes of three successive sizes. They will be arranged into two arrays, one per hemisphere, located on the La Palma island (Spain) and in Paranal (Chile). We present here the optimised and final telescope arrays for both CTA sites, as well as their foreseen performance, resulting from the analysis of three different large-scale Monte Carlo productions.
  •  
6.
  • De Angelis, A., et al. (author)
  • Science with e-ASTROGAM A space mission for MeV-GeV gamma-ray astrophysics
  • 2018
  • In: Journal of High Energy Astrophysics. - : Elsevier. - 2214-4048 .- 2214-4056. ; 19, s. 1-106
  • Journal article (peer-reviewed)abstract
    • e-ASTROGAM ('enhanced ASTROGAM') is a breakthrough Observatory space mission, with a detector composed by a Silicon tracker, a calorimeter, and an anticoincidence system, dedicated to the study of the non-thermal Universe in the photon energy range from 0.3 MeV to 3 GeV - the lower energy limit can be pushed to energies as low as 150 keV for the tracker, and to 30 keV for calorimetric detection. The mission is based on an advanced space-proven detector technology, with unprecedented sensitivity, angular and energy resolution, combined with polarimetric capability. Thanks to its performance in the MeV-GeV domain, substantially improving its predecessors, e-ASTROGAM will open a new window on the non-thermal Universe, making pioneering observations of the most powerful Galactic and extragalactic sources, elucidating the nature of their relativistic outflows and their effects on the surroundings. With a line sensitivity in the MeV energy range one to two orders of magnitude better than previous generation instruments, e-ASTROGAM will determine the origin of key isotopes fundamental for the understanding of supernova explosion and the chemical evolution of our Galaxy. The mission will provide unique data of significant interest to a broad astronomical community, complementary to powerful observatories such as LIGO-Virgo-GEO600-KAGRA, SKA, ALMA, E-ELT, TMT, LSST, JWST, Athena, CTA, IceCube, KM3NeT, and LISA.
  •  
7.
  • Acero, F., et al. (author)
  • THE FIRST FERMI LAT SUPERNOVA REMNANT CATALOG
  • 2016
  • In: Astrophysical Journal Supplement Series. - : American Astronomical Society. - 0067-0049 .- 1538-4365. ; 224:1
  • Journal article (peer-reviewed)abstract
    • To uniformly determine the properties of supernova remnants (SNRs) at high energies, we have developed the first systematic survey at energies from 1 to 100 GeV using data from the Fermi Large Area Telescope (LAT). Based on the spatial overlap of sources detected at GeV energies with SNRs known from radio surveys, we classify 30 sources as likely GeV SNRs. We also report 14 marginal associations and 245 flux upper limits. A mock catalog in which the positions of known remnants are scrambled in Galactic longitude allows us to determine an upper limit of 22% on the number of GeV candidates falsely identified as SNRs. We have also developed a method to estimate spectral and spatial systematic errors arising from the diffuse interstellar emission model, a key component of all Galactic Fermi LAT analyses. By studying remnants uniformly in aggregate, we measure the GeV properties common to these objects and provide a crucial context for the detailed modeling of individual SNRs. Combining our GeV results with multiwavelength (MW) data, including radio, X-ray, and TeV, we demonstrate the need for improvements to previously sufficient, simple models describing the GeV and radio emission from these objects. We model the GeV and MW emission from SNRs in aggregate to constrain their maximal contribution to observed Galactic cosmic rays.
  •  
8.
  • Ahnen, M. L., et al. (author)
  • Limits to dark matter annihilation cross-section from a combined analysis of MAGIC and Fermi-LAT observations of dwarf satellite galaxies
  • 2016
  • In: Journal of Cosmology and Astroparticle Physics. - : IOP Publishing. - 1475-7516. ; :2
  • Journal article (peer-reviewed)abstract
    • We present the first joint analysis of gamma-ray data from the MAGIC Cherenkov telescopes and the Fermi Large Area Telescope (LAT) to search for gamma-ray signals from dark matter annihilation in dwarf satellite galaxies. We combine 158 hours of Segue 1 observations with MAGIC with 6-year observations of 15 dwarf satellite galaxies by the Fermi-LAT. We obtain limits on the annihilation cross-section for dark matter particle masses between 10 GeV and 100 TeV - the widest mass range ever explored by a single gamma-ray analysis. These limits improve on previously published Fermi-LAT and MAGIC results by up to a factor of two at certain masses. Our new inclusive analysis approach is completely generic and can be used to perform a global, sensitivity-optimized dark matter search by combining data from present and future gamma-ray and neutrino detectors.
  •  
9.
  • Aleksic, J., et al. (author)
  • Measurement of the Crab Nebula spectrum over three decades in energy with the MAGIC telescopes
  • 2015
  • In: Journal of High Energy Astrophysics. - : Elsevier BV. - 2214-4048 .- 2214-4056. ; 5-6, s. 30-38
  • Journal article (peer-reviewed)abstract
    • The MAGIC stereoscopic system collected 69 hours of Crab Nebula data between October 2009 and April 2011. Analysis of this data sample using the latest improvements in the MAGIC stereoscopic software provided an unprecedented precision of spectral and night-by-night light curve determination at gamma rays. We derived a differential spectrum with a single instrument from 50 GeV up to almost 30 TeV with 5 bins per energy decade. At low energies, MAGIC results, combined with Fermi-LAT data, show a flat and broad Inverse Compton peak. The overall fit to the data between 1 GeV and 30 TeV is not well described by a log-parabola function. We find that a modified log-parabola function with an exponent of 2.5 instead of 2 provides a good description of the data (chi(2)(red) = 35/26). Using systematic uncertainties of the MAGIC and Fermi-LAT measurements we determine the position of the Inverse Compton peak to be at (53 +/- 3(stat)+ 31(syst)-13(syst)) GeV, which is the most precise estimation up to date and is dominated by the systematic effects. There is no hint of the integral flux variability on daily scales at energies above 300 GeV when systematic uncertainties are included in the flux measurement. We consider three state-of-the-art theoretical models to describe the overall spectral energy distribution of the Crab Nebula. The constant B-field model cannot satisfactorily reproduce the VHE spectral measurements presented in this work, having particular difficulty reproducing the broadness of the observed IC peak. Most probably this implies that the assumption of the homogeneity of the magnetic field inside the nebula is incorrect. On the other hand, the time-dependent 1D spectral model provides a good fit of the new VHE results when considering a 80 mu G magnetic field. However, it fails to match the data when including the morphology of the nebula at lower wavelengths.
  •  
10.
  • Abdo, A. A., et al. (author)
  • Gamma-ray flaring activity from the gravitationally lensed blazar PKS 1830-211 observed by Fermi LAT
  • 2015
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 799:2
  • Journal article (peer-reviewed)abstract
    • The Large Area Telescope ( LAT) on board the FermiGamma- ray Space Telescope routinely detects the MeV- peaked flat- spectrum radio quasar PKS 1830- 211 ( z = 2.507). Its apparent isotropic. - ray luminosity ( E > 100 MeV), averaged over 3 years of observations and peaking on 2010 October 14/ 15 at 2.9 x 1050 erg s- 1, makes it among the brightest high- redshift Fermi blazars. No published model with a single lens can account for all of the observed characteristics of this complex system. Based on radio observations, one expects time- delayed variability to follow about 25 days after a primary flare, with flux about a factor of 1.5 less. Two large. - ray flares of PKS 1830- 211 have been detected by the LAT in the considered period, and no substantial evidence for such a delayed activity was found. This allows us to place a lower limit of about 6 on the. - ray flux ratio between the two lensed images. Swift XRT observations from a dedicated Target of Opportunity program indicate a hard spectrum with no significant correlation of X- ray flux with the. - ray variability. The spectral energy distribution can be modeled with inverse Compton scattering of thermal photons from the dusty torus. The implications of the LAT data in terms of variability, the lack of evident delayed flare events, and different radio and. - ray flux ratios are discussed. Microlensing effects, absorption, size and location of the emitting regions, the complex mass distribution of the system, an energy- dependent inner structure of the source, and flux suppression by the lens galaxy for one image path may be considered as hypotheses for understanding our results.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 25
Type of publication
journal article (23)
conference paper (2)
Type of content
peer-reviewed (24)
other academic/artistic (1)
Author/Editor
Maeda, Yoshitomo (12)
Allen, Steven W. (12)
Axelsson, Magnus (12)
Stawarz, Lukasz (12)
Hughes, John P. (12)
Aharonian, Felix (12)
show more...
Akamatsu, Hiroki (12)
Akimoto, Fumie (12)
Angelini, Lorella (12)
Audard, Marc (12)
Awaki, Hisamitsu (12)
Bamba, Aya (12)
Bautz, Marshall W. (12)
Blandford, Roger (12)
Brenneman, Laura W. (12)
Bulbul, Esra (12)
Cackett, Edward M. (12)
Chernyakova, Maria (12)
Chiao, Meng P. (12)
Coppi, Paolo S. (12)
Costantini, Elisa (12)
de Plaa, Jelle (12)
de Vries, Cor P. (12)
den Herder, Jan-Will ... (12)
Done, Chris (12)
Dotani, Tadayasu (12)
Ebisawa, Ken (12)
Eckart, Megan E. (12)
Enoto, Teruaki (12)
Ezoe, Yuichiro (12)
Fabian, Andrew C. (12)
Ferrigno, Carlo (12)
Foster, Adam R. (12)
Fujimoto, Ryuichi (12)
Fukazawa, Yasushi (12)
Furuzawa, Akihiro (12)
Galeazzi, Massimilia ... (12)
Gallo, Luigi C. (12)
Gandhi, Poshak (12)
Giustini, Margherita (12)
Goldwurm, Andrea (12)
Gu, Liyi (12)
Guainazzi, Matteo (12)
Haba, Yoshito (12)
Hagino, Kouichi (12)
Harrus, Ilana M. (12)
Hatsukade, Isamu (12)
Hayashi, Katsuhiro (12)
Hayashi, Takayuki (12)
Hayashida, Kiyoshi (12)
show less...
University
Stockholm University (21)
Royal Institute of Technology (5)
Linnaeus University (3)
Uppsala University (2)
Karolinska Institutet (1)
Language
English (25)
Research subject (UKÄ/SCB)
Natural sciences (24)
Engineering and Technology (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view