SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hellberg S E) srt2:(2020-2024)"

Sökning: WFRF:(Hellberg S E) > (2020-2024)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Aderne, Rian E., et al. (författare)
  • On the energy gap determination of organic optoelectronic materials : the case of porphyrin derivatives
  • 2022
  • Ingår i: Materials Advances. - : Royal Society of Chemistry. - 2633-5409. ; :3, s. 1791-1803
  • Tidskriftsartikel (refereegranskat)abstract
    • The correct determination of the ionization potential (IP) and electron affinity (EA) as well as the energy gap is essential to properly characterize a series of key phenomena related to the applications of organic semiconductors. For example, energy offsets play an essential role in charge separation in organic photovoltaics. Yet there has been a lot of confusion involving the real physical meaning behind those quantities. Experimentally the energy gap can be measured by direct techniques such as UV-Vis absorption, or indirect techniques such as cyclic voltammetry (CV). Another spectroscopic method is the Reflection Electron Energy Loss Spectroscopy (REELS). Regarding data correlation, there is little consensus on how the REELS' energy gap can be interpreted in light of the energies obtained from other methodologies such as CV, UV-Vis, or photoemission. In addition, even data acquired using those traditional techniques has been misinterpreted or applied to derive conclusions beyond the limits imposed by the physics of the measurement. A similar situation also happens when different theoretical approaches are used to assess the energy gap or employed to explain outcomes from experiments. By using a set of porphyrin derivatives as model molecules, we discuss some key aspects of those important issues. The peculiar properties of these porphyrins demonstrate that even straightforward measurements or calculations performed in a group of very similar molecules need a careful interpretation of the outcomes. Differences up to 660 meV (similar to 190 meV) are found comparing REELS (electrochemical) measurements with UV-Vis energy gaps, for instance. From the theoretical point of view, a reasonable agreement with electrochemical measurements of the IP, EA, and the gap of the porphyrins is only obtained when the calculations involve the full thermodynamics of the redox processes. The purpose of this work is to shed light on the differences and similarities of those aforementioned characterization methods and provide some insight that might help one to develop a critical analysis of the different experimental and theoretical methodologies.
  •  
7.
  •  
8.
  • Hellberg, I., et al. (författare)
  • 3D analysis and grading of calcifications from ex vivo human meniscus
  • 2023
  • Ingår i: Osteoarthritis and Cartilage. - : Elsevier BV. - 1063-4584. ; 31:4, s. 482-492
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Meniscal calcifications are associated with the pathogenesis of knee osteoarthritis (OA). We propose a micro-computed tomography (μCT) based 3D analysis of meniscal calcifications ex vivo, including a new grading system. Method: Human medial and lateral menisci were obtained from 10 patients having total knee replacement for medial compartment OA and 10 deceased donors without knee OA (healthy references). The samples were fixed; one subsection was imaged with μCT, and the adjacent tissue was processed for histological evaluation. Calcifications were examined from the reconstructed 3D μCT images, and a new grading system was developed. To validate the grading system, meniscal calcification volumes (CVM) were quantitatively analyzed and compared between the calcification grades. Furthermore, we estimated the relationship between histopathological degeneration and the calcification severity. Results: 3D μCT images depict calcifications in every sample, including diminutive calcifications that are not visible in histology. In the new grading system, starting from grade 2, each grade results in a CVM that is 20.3 times higher (95% CI 13.3–30.5) than in the previous grade. However, there was no apparent difference in CVM between grades 1 and 2. The calcification grades appear to increase with the increasing histopathological degeneration, although histopathological degeneration is also observed with small calcification grades. Conclusions: 3D μCT grading of meniscal calcifications is feasible. Interestingly, it seems that there are two patterns of degeneration in the menisci of our sample set: 1) with diminutive calcifications (calcification grades 1–2), and 2) with large to widespread calcifications (calcification grades 3–5).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy