SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Hendrickx T) srt2:(2015-2019)"

Search: WFRF:(Hendrickx T) > (2015-2019)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Newnham, D. A., et al. (author)
  • Observations and Modeling of Increased Nitric Oxide in the Antarctic Polar Middle Atmosphere Associated With Geomagnetic Storm-Driven Energetic Electron Precipitation
  • 2018
  • In: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 123:7, s. 6009-6025
  • Journal article (peer-reviewed)abstract
    • Nitric oxide (NO) produced in the polar middle and upper atmosphere by energetic particle precipitation depletes ozone in the mesosphere and, following vertical transport in the winter polar vortex, in the stratosphere. Medium-energy electron (MEE) ionization by 30-1,000 keV electrons during geomagnetic storms may have a significant role in mesospheric NO production. However, questions remain about the relative importance of direct NO production by MEE at altitudes similar to 60-90 km versus indirect NO originating from auroral ionization above 90 km. We investigate potential drivers of NO variability in the southern-hemisphere mesosphere and lower thermosphere during 2013-2014. Contrasting geomagnetic activity occurred during the two austral winters, with more numerous moderate storms in the 2013 winter. Ground-based millimeter-wave observations of NO from Halley, Antarctica, are compared with measurements by the Solar Occultation For Ice Experiment (SOFIE) spaceborne spectrometer. NO partial columns over the altitude range 65-140 km from the two observational data sets show large day-to-day variability and significant disagreement, with Halley values on average 49% higher than the corresponding SOFIE data. SOFIE NO number densities, zonally averaged over geomagnetic latitudes -59 degrees to -65 degrees, are up to 3 x 10(8)/cm(3) higher in the winter of 2013 compared to 2014. Comparisons with a new version of the Whole Atmosphere Community Climate Model, which includes detailed D-region ion chemistry (WACCM-SIC) and MEE ionization rates, show that the model underestimates NO in the winter lower mesosphere whereas thermospheric abundances are too high. This indicates the need to further improve and verify WACCM-SIC with respect to MEE ionization, thermospheric NO chemistry, and vertical transport.
  •  
3.
  • Sikoparija, B., et al. (author)
  • Spatial and temporal variations in airborne Ambrosia pollen in Europe
  • 2017
  • In: Aerobiologia. - : Springer Science and Business Media LLC. - 0393-5965 .- 1573-3025. ; 33, s. 181-189
  • Journal article (peer-reviewed)abstract
    • © 2016, The Author(s). The European Commission Cooperation in Science and Technology (COST) Action FA1203 “SMARTER” aims to make recommendations for the sustainable management of Ambrosia across Europe and for monitoring its efficiency and cost-effectiveness. The goal of the present study is to provide a baseline for spatial and temporal variations in airborne Ambrosia pollen in Europe that can be used for the management and evaluation of this noxious plant. The study covers the full range of Ambrosia artemisiifolia L. distribution over Europe (39°N–60°N; 2°W–45°E). Airborne Ambrosia pollen data for the principal flowering period of Ambrosia (August–September) recorded during a 10-year period (2004–2013) were obtained from 242 monitoring sites. The mean sum of daily average airborne Ambrosia pollen and the number of days that Ambrosia pollen was recorded in the air were analysed. The mean and standard deviation (SD) were calculated regardless of the number of years included in the study period, while trends are based on those time series with 8 or more years of data. Trends were considered significant at p<0.05. There were few significant trends in the magnitude and frequency of atmospheric Ambrosia pollen (only 8% for the mean sum of daily average Ambrosia pollen concentrations and 14% for the mean number of days Ambrosia pollen were recorded in the air). The direction of any trends varied locally and reflected changes in sources of the pollen, either in size or in distance from the monitoring station. Pollen monitoring is important for providing an early warning of the expansion of this invasive and noxious plant.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view