SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Hietala P.) srt2:(2020-2024)"

Search: WFRF:(Hietala P.) > (2020-2024)

  • Result 1-10 of 10
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Brasseur, Z., et al. (author)
  • Measurement report: Introduction to the HyICE-2018 campaign for measurements of ice-nucleating particles and instrument inter-comparison in the Hyytiala boreal forest
  • 2022
  • In: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 22:8, s. 5117-5145
  • Journal article (peer-reviewed)abstract
    • The formation of ice particles in Earth's atmosphere strongly influences the dynamics and optical properties of clouds and their impacts on the climate system. Ice formation in clouds is often triggered heterogeneously by ice-nucleating particles (INPs) that represent a very low number of particles in the atmosphere. To date, many sources of INPs, such as mineral and soil dust, have been investigated and identified in the low and mid latitudes. Although less is known about the sources of ice nucleation at high latitudes, efforts have been made to identify the sources of INPs in the Arctic and boreal environments. In this study, we investigate the INP emission potential from high-latitude boreal forests in the mixed-phase cloud regime. We introduce the HyICE-2018 measurement campaign conducted in the boreal forest of Hyytiala, Finland, between February and June 2018. The campaign utilized the infrastructure of the Station for Measuring Ecosystem-Atmosphere Relations (SMEAR) II, with additional INP instruments, including the Portable Ice Nucleation Chamber I and II (PINC and PINCii), the SPectrometer for Ice Nuclei (SPIN), the Portable Ice Nucleation Experiment (PINE), the Ice Nucleation SpEctrometer of the Karlsruhe Institute of Technology (INSEKT) and the Microlitre Nucleation by Immersed Particle Instrument (mu L-NIPI), used to quantify the INP concentrations and sources in the boreal environment. In this contribution, we describe the measurement infrastructure and operating procedures during HyICE-2018, and we report results from specific time periods where INP instruments were run in parallel for inter-comparison purposes. Our results show that the suite of instruments deployed during HyICE-2018 reports consistent results and therefore lays the foundation for forthcoming results to be considered holistically. In addition, we compare measured INP concentrations to INP parameterizations, and we observe good agreement with the Tobo et al. (2013) parameterization developed from measurements conducted in a ponderosa pine forest ecosystem in Colorado, USA.
  •  
2.
  •  
3.
  • Dimmock, Andrew P., et al. (author)
  • Compiling Magnetosheath Statistical Data Sets Under Specific Solar Wind Conditions : Lessons Learnt From the Dayside Kinetic Southward IMF GEM Challenge
  • 2020
  • In: Earth and Space Science. - : AMER GEOPHYSICAL UNION. - 2333-5084. ; 7:6
  • Journal article (peer-reviewed)abstract
    • The Geospace Environmental Modelling (GEM) community offers a framework for collaborations between modelers, observers, and theoreticians in the form of regular challenges. In many cases, these challenges involve model-data comparisons to provide wider context to observations or validate model results. To perform meaningful comparisons, a statistical approach is often adopted, which requires the extraction of a large number of measurements from a specific region. However, in complex regions such as the magnetosheath, compiling these data can be difficult. Here, we provide the statistical context of compiling statistical data for the southward IMF GEM challenge initiated by the "Dayside Kinetic Processes in Global Solar Wind-Magnetosphere Interaction" focus group. It is shown that matching very specific upstream conditions can severely impact the statistical data if limits are imposed on several solar wind parameters. We suggest that future studies that wish to compare simulations and/or single events to statistical data should carefully consider at an early stage the availability of data in context with the upstream criteria. We also demonstrate the importance of how specific IMF conditions are defined, the chosen spacecraft, the region of interest, and how regions are identified automatically. The lessons learnt in this study are of wide context to many future studies as well as GEM challenges. The results also highlight the issue where a global statistical perspective has to be balanced with its relevance to more-extreme, less-frequent individual events, which is typically the case in the field of space weather.
  •  
4.
  • Hauke, DJ, et al. (author)
  • Multimodal prognosis of negative symptom severity in individuals at increased risk of developing psychosis
  • 2021
  • In: Translational psychiatry. - : Springer Science and Business Media LLC. - 2158-3188. ; 11:1, s. 312-
  • Journal article (peer-reviewed)abstract
    • Negative symptoms occur frequently in individuals at clinical high risk (CHR) for psychosis and contribute to functional impairments. The aim of this study was to predict negative symptom severity in CHR after 9 months. Predictive models either included baseline negative symptoms measured with the Structured Interview for Psychosis-Risk Syndromes (SIPS-N), whole-brain gyrification, or both to forecast negative symptoms of at least moderate severity in 94 CHR. We also conducted sequential risk stratification to stratify CHR into different risk groups based on the SIPS-N and gyrification model. Additionally, we assessed the models’ ability to predict functional outcomes in CHR and their transdiagnostic generalizability to predict negative symptoms in 96 patients with recent-onset psychosis (ROP) and 97 patients with recent-onset depression (ROD). Baseline SIPS-N and gyrification predicted moderate/severe negative symptoms with significant balanced accuracies of 68 and 62%, while the combined model achieved 73% accuracy. Sequential risk stratification stratified CHR into a high (83%), medium (40–64%), and low (19%) risk group regarding their risk of having moderate/severe negative symptoms at 9 months follow-up. The baseline SIPS-N model was also able to predict social (61%), but not role functioning (59%) at above-chance accuracies, whereas the gyrification model achieved significant accuracies in predicting both social (76%) and role (74%) functioning in CHR. Finally, only the baseline SIPS-N model showed transdiagnostic generalization to ROP (63%). This study delivers a multimodal prognostic model to identify those CHR with a clinically relevant negative symptom severity and functional impairments, potentially requiring further therapeutic consideration.
  •  
5.
  • Helenius, K., et al. (author)
  • Overlap between EEC and AEC syndrome and immunodeficiency in a preterm infant with a TP63 variant
  • 2023
  • In: European Journal of Medical Genetics. - : Elsevier BV. - 1769-7212. ; 66:5
  • Journal article (peer-reviewed)abstract
    • Pathogenic variants in the transcription factor TP63 gene cause a variety of clinical phenotypes, such as ectrodactyly-ectodermal dysplasia-clefting (EEC) syndrome and ankyloblepharon-ectodermal dysplasia-clefting (AEC) syndrome. Historically, TP63-related phenotypes have been divided into several syndromes based on both the clinical presentation and location of the pathogenic variant on the TP63 gene. This division is complicated by significant overlap between syndromes.Here we describe a patient with clinical characteristics of different TP63-associated syndromes (cleft lip and palate, split feet, ectropion, erosions of the skin and corneas), associated with a de novo heterozygous pathogenic variant c.1681 T>C, p.(Cys561Arg) in exon 13 of the TP63 gene. Our patient also developed enlargement of the left-sided cardiac compartments and secondary mitral insufficiency, which is a novel finding, and immune deficiency, which has only rarely been reported. The clinical course was further complicated by prematurity and very low birth weight. We illustrate the overlapping features of EEC and AEC syndrome and multidisciplinary care needed to address the various clinical challenges.
  •  
6.
  • Hietala, H., et al. (author)
  • The Challenges and Rewards of Running a Geospace Environment Modeling Challenge
  • 2020
  • In: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 125:3
  • Journal article (other academic/artistic)abstract
    • Geospace Environment Modeling (GEM) is a community-driven, National Science Foundation-sponsored research program investigating the physics of the Earth's magnetosphere and its coupling to the solar wind and the atmosphere. This commentary provides an introduction to a Special Issue collating recent studies related to a GEM Challenge on kinetic plasma processes in the dayside magnetosphere during southward interplanetary magnetic field conditions. We also recount our experiences of organizing such a collaborative activity, where modelers and observers compare their results, that is, of the human side of bringing researchers together. We give suggestions on planning, managing, funding, and documenting these activities, which provide valuable opportunities to advance the field. Plain Language Summary Geospace Environment Modeling (GEM) is a community-driven, National Science Foundation-sponsored research program investigating the physics of the Earth's magnetosphere and its coupling to the solar wind and the atmosphere. An integral part of the program is the so-called "Challenges", which bring people together to compare models and observations in order to advance our understanding of the near-Earth space environment. This commentary provides an introduction to a Special Issue collating recent studies related to one such collaborative effort. We also share our experiences as early-career scientists organizing such an activity, to aid those who might take part in such endeavors in the future. We give suggestions on planning, managing, funding, and documenting the activities.
  •  
7.
  • Robertson, S. L., et al. (author)
  • Electron Trapping in Magnetic Mirror Structures at the Edge of Magnetopause Flux Ropes
  • 2021
  • In: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 126:4
  • Journal article (peer-reviewed)abstract
    • Flux ropes are a proposed site for particle energization during magnetic reconnection, with several mechanisms proposed. Here, Magnetospheric Multiscale mission observations of magnetic mirror structures on the edge of two ion-scale magnetopause flux ropes are presented. Donut-shaped features in the electron pitch angle distributions provide evidence for electron trapping in the structures. Furthermore, both events show trapping with extended 3D structure along the body of the flux rope. Potential formation mechanisms, such as the magnetic mirror instability, are examined and the evolutionary states of the structures are compared. Pressure and force analysis suggest that such structures could provide an important electron acceleration mechanism for magnetopause flux ropes, and for magnetic reconnection more generally.
  •  
8.
  • Telloni, D., et al. (author)
  • Study of two interacting interplanetary coronal mass ejections encountered by Solar Orbiter during its first perihelion passage Observations and modeling
  • 2021
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 656
  • Journal article (peer-reviewed)abstract
    • Context. Solar Orbiter, the new-generation mission dedicated to solar and heliospheric exploration, was successfully launched on February 10, 2020, 04:03 UTC from Cape Canaveral. During its first perihelion passage in June 2020, two successive interplanetary coronal mass ejections (ICMEs), propagating along the heliospheric current sheet (HCS), impacted the spacecraft.Aims. This paper addresses the investigation of the ICMEs encountered by Solar Orbiter on June 7-8, 2020, from both an observational and a modeling perspective. The aim is to provide a full description of those events, their mutual interaction, and their coupling with the ambient solar wind and the HCS.Methods. Data acquired by the MAG magnetometer, the Energetic Particle Detector suite, and the Radio and Plasma Waves instrument are used to provide information on the ICMEs' magnetic topology configuration, their magnetic connectivity to the Sun, and insights into the heliospheric plasma environment where they travel, respectively. On the modeling side, the Heliospheric Upwind eXtrapolation model, the 3D COronal Rope Ejection technique, and the EUropean Heliospheric FORecasting Information Asset (EUHFORIA) tool are used to complement Solar Orbiter observations of the ambient solar wind and ICMEs, and to simulate the evolution and interaction of the ejecta in the inner heliosphere, respectively.Results. Both data analysis and numerical simulations indicate that the passage of two distinct, dynamically and magnetically interacting (via magnetic reconnection processes) ICMEs at Solar Orbiter is a possible scenario, supported by the numerous similarities between EUHFORIA time series at Solar Orbiter and Solar Orbiter data.Conclusions. The combination of in situ measurements and numerical simulations (together with remote sensing observations of the corona and inner heliosphere) will significantly lead to a deeper understanding of the physical processes occurring during the CME-CME interaction.
  •  
9.
  • Trotta, Domenico, et al. (author)
  • Properties of an Interplanetary Shock Observed at 0.07 and 0.7 au by Parker Solar Probe and Solar Orbiter
  • 2024
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 962:2
  • Journal article (peer-reviewed)abstract
    • The Parker Solar Probe (PSP) and Solar Orbiter (SolO) missions opened a new observational window in the inner heliosphere, which is finally accessible to direct measurements. On 2022 September 5, a coronal mass ejection (CME)-driven interplanetary (IP) shock was observed as close as 0.07 au by PSP. The CME then reached SolO, which was radially well-aligned at 0.7 au, thus providing us with the opportunity to study the shock properties at different heliocentric distances. We characterize the shock, investigate its typical parameters, and compare its small-scale features at both locations. Using the PSP observations, we investigate how magnetic switchbacks and ion cyclotron waves are processed upon shock crossing. We find that switchbacks preserve their V-B correlation while compressed upon the shock passage, and that the signature of ion cyclotron waves disappears downstream of the shock. By contrast, the SolO observations reveal a very structured shock transition, with a population of shock-accelerated protons of up to about 2 MeV, showing irregularities in the shock downstream, which we correlate with solar wind structures propagating across the shock. At SolO, we also report the presence of low-energy (similar to 100 eV) electrons scattering due to upstream shocklets. This study elucidates how the local features of IP shocks and their environments can be very different as they propagate through the heliosphere.
  •  
10.
  • Trotta, D., et al. (author)
  • Three-dimensional modelling of the shock-turbulence interaction
  • 2023
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press. - 0035-8711 .- 1365-2966. ; 525:2, s. 1856-1866
  • Journal article (peer-reviewed)abstract
    • The complex interaction between shocks and plasma turbulence is extremely important to address crucial features of energy conversion in a broad range of astrophysical systems. We study the interaction between a supercritical, perpendicular shock and pre-existing, fully developed plasma turbulence, employing a novel combination of magnetohydrodynamic and small-scale, hybrid-kinetic simulations where a shock is propagating through a turbulent medium. The variability of the shock front in the unperturbed case and for two levels of upstream fluctuations is addressed. We find that the behaviour of shock ripples, i.e. shock surface fluctuations with short (a few ion skin depths, di) wavelengths, is modified by the presence of pre-existing turbulence, which also induces strong corrugations of the shock front at larger scales. We link this complex behaviour of the shock front and the shock downstream structuring with the proton temperature anisotropies produced in the shock-turbulence system. Finally, we put our modelling effort in the context of spacecraft observations, elucidating the role of novel cross-scale, multispacecraft measurements in resolving shock front irregularities at different scales. These results are relevant for a broad range of astrophysical systems characterized by the presence of shock waves interacting with plasma turbulence.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view