SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Hirose C.) srt2:(2005-2009)"

Search: WFRF:(Hirose C.) > (2005-2009)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Moortgat-Pick, G., et al. (author)
  • Polarized positrons and electrons at the linear collider
  • 2008
  • In: Physics reports. - : Elsevier BV. - 0370-1573 .- 1873-6270. ; 460:4-5, s. 131-243
  • Research review (peer-reviewed)abstract
    • The proposed International Linear Collider (ILC) is well-suited for discovering physics beyond the Standard Model and for precisely unraveling the structure of the underlying physics. The physics return can be maximized by the use of polarized beams. This report shows the paramount role of polarized beams and summarizes the benefits obtained from polarizing the positron beam, as well as the electron beam. The physics case for this option is illustrated explicitly by analyzing reference reactions in different physics scenarios. The results show that positron polarization, combined with the clean experimental environment provided by the linear collider, allows to improve strongly the potential of searches for new particles and the identification of their dynamics, which opens the road to resolve shortcomings of the Standard Model. The report also presents an overview of possible designs for polarizing both beams at the ILC, as well as for measuring their polarization.
  •  
2.
  • Holland, Linda Z, et al. (author)
  • The amphioxus genome illuminates vertebrate origins and cephalochordate biology
  • 2008
  • In: Genome Research. - : Cold Spring Harbor Laboratory. - 1088-9051 .- 1549-5469. ; 18:7, s. 1100-1111
  • Journal article (peer-reviewed)abstract
    • Cephalochordates, urochordates, and vertebrates evolved from a common ancestor over 520 million years ago. To improve our understanding of chordate evolution and the origin of vertebrates, we intensively searched for particular genes, gene families, and conserved noncoding elements in the sequenced genome of the cephalochordate Branchiostoma floridae, commonly called amphioxus or lancelets. Special attention was given to homeobox genes, opsin genes, genes involved in neural crest development, nuclear receptor genes, genes encoding components of the endocrine and immune systems, and conserved cis-regulatory enhancers. The amphioxus genome contains a basic set of chordate genes involved in development and cell signaling, including a fifteenth Hox gene. This set includes many genes that were co-opted in vertebrates for new roles in neural crest development and adaptive immunity. However, where amphioxus has a single gene, vertebrates often have two, three, or four paralogs derived from two whole-genome duplication events. In addition, several transcriptional enhancers are conserved between amphioxus and vertebrates--a very wide phylogenetic distance. In contrast, urochordate genomes have lost many genes, including a diversity of homeobox families and genes involved in steroid hormone function. The amphioxus genome also exhibits derived features, including duplications of opsins and genes proposed to function in innate immunity and endocrine systems. Our results indicate that the amphioxus genome is elemental to an understanding of the biology and evolution of nonchordate deuterostomes, invertebrate chordates, and vertebrates.
  •  
3.
  • Sciambi, C. J., et al. (author)
  • A bidirectional kinesin motor in live Drosophila embryos
  • 2005
  • In: Traffic. - 1398-9219. ; 6:11, s. 1036-1046
  • Journal article (peer-reviewed)abstract
    • Spindle assembly and elongation involve poleward and away-from-the-pole forces produced by microtubule dynamics and spindle-associated motors. Here, we show that a bidirectional Drosophila Kinesin-14 motor that moves either to the microtubule plus or minus end in vitro unexpectedly causes only minor spindle defects in vivo. However, spindles of mutant embryos are longer than wild type, consistent with increased plus-end motor activity. Strikingly, suppressing spindle dynamics by depriving embryos of oxygen causes the bidirectional motor to show increased accumulation at distal or plus ends of astral microtubules relative to wild type, an effect not observed for a mutant motor defective in motility. Increased motor accumulation at microtubule plus ends may be due to increased slow plus-end movement of the bidirectional motor under hypoxia, caused by perturbation of microtubule dynamics or inactivation of the only other known Drosophila minus-end spindle motor, cytoplasmic dynein. Negative-stain electron microscopy images are consistent with highly cooperative motor binding to microtubules, and gliding assays show dependence on motor density for motility. Mutant effects of the bidirectional motor on spindle function may be suppressed under normal conditions by motor: motor interactions and minus-end movement induced by spindle dynamics. These forces may also bias wild-type motor movement toward microtubule minus ends in live cells. Our findings link motor : motor interactions to function in vivo by showing that motor density, together with cellular dynamics, may influence motor function in live cells.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view