SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Hogendoorn P C) srt2:(2010-2014)"

Search: WFRF:(Hogendoorn P C) > (2010-2014)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Hemingway, F., et al. (author)
  • Smooth muscle actin expression in primary bone tumours
  • 2012
  • In: Virchows Archiv: an international journal of pathology. - : Springer Science and Business Media LLC. - 1432-2307. ; 460:5, s. 525-534
  • Journal article (peer-reviewed)abstract
    • Alpha isoform of smooth muscle actin (SMA) expression has been reported in giant cell tumour of bone (GCTB) and other benign and malignant bone tumours, but the pattern of SMA expression and the precise nature of SMA-expressing cells in these lesions is uncertain. We determined by immunohistochemistry the expression of SMA and other muscle and vascular markers in normal bone, GCTB and a wide range of primary benign and malignant bone tumours. Cultured stromal cells of GCTB, chondroblastoma (CB), and aneurysmal bone cyst (ABC) were also analysed for SMA expression. SMA was only noted in blood vessels in normal bone. SMA was expressed by mononuclear stromal cells (MSC) cultured from GCTB, ABC and CB. SMA was strongly and diffusely expressed by MSC in non-ossifying fibroma, fibrous dysplasia, and "brown tumour" of hyperparathyroidism. SMA expression was also noted in GCTB, ABC, CB, chondromyxoid fibroma, malignant fibrous histiocytoma of bone and osteosarcoma. Little or no SMA was noted in Langerhans cell histiocytosis, simple bone cyst, Ewing's sarcoma, osteoblastoma, osteoid osteoma, enchondroma, osteochondroma, chondrosarcoma, myeloma, lymphoma, chordoma and adamantinoma. Our findings show that there is differential SMA expression in primary bone tumours and that identifying the presence or absence of SMA is useful in the differential diagnosis of these lesions. The nature of SMA-expressing cells in bone tumours is uncertain but they are negative for desmin and caldesmon and could represent either myofibroblasts or perivascular cells, such as pericytes.
  •  
6.
  • Kuijjer, Marieke L., et al. (author)
  • Identification of osteosarcoma driver genes by integrative analysis of copy number and gene expression data
  • 2012
  • In: Genes Chromosomes and Cancer. - : Wiley. - 1045-2257 .- 1098-2264. ; 51, s. 696-706
  • Journal article (peer-reviewed)abstract
    • High-grade osteosarcoma is a tumor with a complex genomic profile, occurring primarily in adolescents with a second peak at middle age. The extensive genomic alterations obscure the identification of genes driving tumorigenesis during osteosarcoma development. To identify such driver genes, we integrated DNA copy number profiles (Affymetrix SNP 6.0) of 32 diagnostic biopsies with 84 expression profiles (Illumina Human-6 v2.0) of high-grade osteosarcoma as compared with its putative progenitor cells, i.e., mesenchymal stem cells (n = 12) or osteoblasts (n = 3). In addition, we performed paired analyses between copy number and expression profiles of a subset of 29 patients for which both DNA and mRNA profiles were available. Integrative analyses were performed in Nexus Copy Number software and statistical language R. Paired analyses were performed on all probes detecting significantly differentially expressed genes in corresponding LIMMA analyses. For both nonpaired and paired analyses, copy number aberration frequency was set to >35%. Nonpaired and paired integrative analyses resulted in 45 and 101 genes, respectively, which were present in both analyses using different control sets. Paired analyses detected >90% of all genes found with the corresponding nonpaired analyses. Remarkably, approximately twice as many genes as found in the corresponding nonpaired analyses were detected. Affected genes were intersected with differentially expressed genes in osteosarcoma cell lines, resulting in 31 new osteosarcoma driver genes. Cell division related genes, such as MCM4 and LATS2, were overrepresented and genomic instability was predictive for metastasis-free survival, suggesting that deregulation of the cell cycle is a driver of osteosarcomagenesis. © 2012 Wiley Periodicals, Inc.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view