SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Hogenkamp Pleunie S) srt2:(2016)"

Search: WFRF:(Hogenkamp Pleunie S) > (2016)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Hogenkamp, Pleunie S., et al. (author)
  • Higher resting-state activity in reward-related brain circuits in obese versus normal-weight females independent of food intake
  • 2016
  • In: International Journal of Obesity. - : Springer Science and Business Media LLC. - 0307-0565 .- 1476-5497. ; 40:11, s. 1687-1692
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: In response to food cues, obese vs normal-weight individuals show greater activation in brain regions involved in the regulation of food intake under both fasted and sated conditions. Putative effects of obesity on task-independent low-frequency blood-oxygenation-level-dependent signals-that is, resting-state brain activity-in the context of food intake are, however, less well studied.OBJECTIVE: To compare eyes closed, whole-brain low-frequency BOLD signals between severely obese and normal-weight females, as assessed by functional magnetic resonance imaging (fMRI).METHODS: Fractional amplitude of low-frequency fluctuations were measured in the morning following an overnight fast in 17 obese (age: 39±11 years, body mass index (BMI): 42.3±4.8 kg m(-)(2)) and 12 normal-weight females (age: 36±12 years, BMI: 22.7±1.8 kg m(-)(2)), both before and 30 min after consumption of a standardized meal (~260 kcal).RESULTS: Compared with normal-weight controls, obese females had increased low-frequency activity in clusters located in the putamen, claustrum and insula (P<0.05). This group difference was not altered by food intake. Self-reported hunger dropped and plasma glucose concentrations increased after food intake (P<0.05); however, these changes did not differ between the BMI groups.CONCLUSION: Reward-related brain regions are more active under resting-state conditions in obese than in normal-weight females. This difference was independent of food intake under the experimental settings applied in the current study. Future studies involving males and females, as well as utilizing repeated post-prandial resting-state fMRI scans and various types of meals are needed to further investigate how food intake alters resting-state brain activity in obese humans.International Journal of Obesity advance online publication, 28 June 2016; doi:10.1038/ijo.2016.105.
  •  
2.
  • Rask-Andersen, Mathias, et al. (author)
  • Postprandial alterations in whole-blood DNA methylation are mediated by changes in white blood cell composition
  • 2016
  • In: American Journal of Clinical Nutrition. - : Elsevier BV. - 0002-9165 .- 1938-3207. ; 104:2, s. 518-525
  • Journal article (peer-reviewed)abstract
    • Background: DNA methylation is an essential nuclear process associated with genomic functions such as transcription factor binding and the regulation of gene expression. DNA methylation patterns can also serve as potential biomarkers for disease progression and response to therapy. However, the full dynamics of DNA methylation across daily physiologic events have not been fully elucidated. Objective: We sought to study how ingesting a standardized meal acutely affects peripheral blood DNA methylation. Design: We performed an observational study in healthy men (n = 26) on DNA methylation and gene expression in whole blood before and 160 min after the ingestion of a standardized meal. Cytosine-phosphate-guanine (CpG) methylation was assayed on the HumanMethylation450k microarray, and gene expression was measured with the Human Gene 2.1 ST Array. Results: Differential methylation after food intake was detected in 13% of the analyzed probes (63,207 CpG probes) at a 5% false discovery rate (FDR). This effect was driven by changes in leukocyte fractions as estimated from comparisons against methylation datasets generated from sorted leukocytes. When methylation values were adjusted for estimated leukocyte fractions, 541 probes were observed to be altered in the postprandial state (5% FDR). Conclusions: Apparent alterations in DNA methylation 160 min after meal ingestion mainly reflect changes in the estimated leukocyte population in whole blood. These results have major methodologic implications for genome-wide methylation studies because they highlight the strong underlying effects of changes in leukocyte fractions on CpG methylation patterns as well as the potential importance of meal-standardized sampling procedures for future investigations when alterations in white blood cell fractions are unavailable.
  •  
3.
  • Rogers, P. J., et al. (author)
  • Does low-energy sweetener consumption affect energy intake and body weight? : A systematic review, including meta-analyses, of the evidence from human and animal studies
  • 2016
  • In: International Journal of Obesity. - : Springer Science and Business Media LLC. - 0307-0565 .- 1476-5497. ; 40:3, s. 381-394
  • Research review (peer-reviewed)abstract
    • By reducing energy density, low-energy sweeteners (LES) might be expected to reduce energy intake (EI) and body weight (BW). To assess the totality of the evidence testing the null hypothesis that LES exposure (versus sugars or unsweetened alternatives) has no effect on EI or BW, we conducted a systematic review of relevant studies in animals and humans consuming LES with ad libitum access to food energy. In 62 of 90 animal studies exposure to LES did not affect or decreased BW. Of 28 reporting increased BW, 19 compared LES with glucose exposure using a specific 'learning' paradigm. Twelve prospective cohort studies in humans reported inconsistent associations between LES use and body mass index (-0.002 kg m(-2) per year, 95% confidence interval (CI) -0.009 to 0.005). Meta-analysis of short-term randomized controlled trials (129 comparisons) showed reduced total EI for LES versus sugar-sweetened food or beverage consumption before an ad libitum meal (-94 kcal, 95% CI -122 to -66), with no difference versus water (-2 kcal, 95% CI -30 to 26). This was consistent with EI results from sustained intervention randomized controlled trials (10 comparisons). Meta-analysis of sustained intervention randomized controlled trials (4 weeks to 40 months) showed that consumption of LES versus sugar led to relatively reduced BW (nine comparisons; -1.35 kg, 95% CI -2.28 to -0.42), and a similar relative reduction in BW versus water (three comparisons; -1.24 kg, 95% CI -2.22 to -0.26). Most animal studies did not mimic LES consumption by humans, and reverse causation may influence the results of prospective cohort studies. The preponderance of evidence from all human randomized controlled trials indicates that LES do not increase EI or BW, whether compared with caloric or non-caloric (for example, water) control conditions. Overall, the balance of evidence indicates that use of LES in place of sugar, in children and adults, leads to reduced EI and BW, and possibly also when compared with water.
  •  
4.
  • Wiemerslage, Lyle, et al. (author)
  • An obesity-associated risk allele within the FTO gene affects human brain activity for areas important for emotion, impulse control and reward in response to food images
  • 2016
  • In: European Journal of Neuroscience. - : Wiley. - 0953-816X .- 1460-9568. ; 43:9, s. 1173-1180
  • Journal article (peer-reviewed)abstract
    • Understanding how genetics influences obesity, brain activity and eating behaviour will add important insight for developing strategies for weight-loss treatment, as obesity may stem from different causes and as individual feeding behaviour may depend on genetic differences. To this end, we examined how an obesity risk allele for the FTO gene affects brain activity in response to food images of different caloric content via functional magnetic resonance imaging (fMRI). Thirty participants homozygous for the rs9939609 single nucleotide polymorphism were shown images of low-or high-calorie food while brain activity was measured via fMRI. In a whole-brain analysis, we found that people with the FTO risk allele genotype (AA) had increased activity compared with the non-risk (TT) genotype in the posterior cingulate, cuneus, precuneus and putamen. Moreover, higher body mass index in the AA genotype was associated with reduced activity to food images in areas important for emotion (cingulate cortex), but also in areas important for impulse control (frontal gyri and lentiform nucleus). Lastly, we corroborate our findings with behavioural scales for the behavioural inhibition and activation systems. Our results suggest that the two genotypes are associated with differential neural processing of food images, which may influence weight status through diminished impulse control and reward processing.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view