SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Holmdahl M) srt2:(2020-2024)"

Search: WFRF:(Holmdahl M) > (2020-2024)

  • Result 1-10 of 50
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Mingardo, E, et al. (author)
  • A genome-wide association study with tissue transcriptomics identifies genetic drivers for classic bladder exstrophy
  • 2022
  • In: Communications biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 5:1, s. 1203-
  • Journal article (peer-reviewed)abstract
    • Classic bladder exstrophy represents the most severe end of all human congenital anomalies of the kidney and urinary tract and is associated with bladder cancer susceptibility. Previous genetic studies identified one locus to be involved in classic bladder exstrophy, but were limited to a restrict number of cohort. Here we show the largest classic bladder exstrophy genome-wide association analysis to date where we identify eight genome-wide significant loci, seven of which are novel. In these regions reside ten coding and four non-coding genes. Among the coding genes is EFNA1, strongly expressed in mouse embryonic genital tubercle, urethra, and primitive bladder. Re-sequence of EFNA1 in the investigated classic bladder exstrophy cohort of our study displays an enrichment of rare protein altering variants. We show that all coding genes are expressed and/or significantly regulated in both mouse and human embryonic developmental bladder stages. Furthermore, nine of the coding genes residing in the regions of genome-wide significance are differentially expressed in bladder cancers. Our data suggest genetic drivers for classic bladder exstrophy, as well as a possible role for these drivers to relevant bladder cancer susceptibility.
  •  
2.
  • Rieke, Johanna Magdalena, et al. (author)
  • SLC20A1Is Involved in Urinary Tract and Urorectal Development
  • 2020
  • In: Frontiers in Cell and Developmental Biology. - : FRONTIERS MEDIA SA. - 2296-634X. ; 8
  • Journal article (peer-reviewed)abstract
    • Previous studies in developingXenopusand zebrafish reported that the phosphate transporterslc20a1ais expressed in pronephric kidneys. The recent identification ofSLC20A1as a monoallelic candidate gene for cloacal exstrophy further suggests its involvement in the urinary tract and urorectal development. However, little is known of the functional role ofSLC20A1in urinary tract development. Here, we investigated this using morpholino oligonucleotide knockdown of the zebrafish orthologslc20a1a. This caused kidney cysts and malformations of the cloaca. Moreover, in morphants we demonstrated dysfunctional voiding and hindgut opening defects mimicking imperforate anus in human cloacal exstrophy. Furthermore, we performed immunohistochemistry of an unaffected 6-week-old human embryo and detectedSLC20A1in the urinary tract and the abdominal midline, structures implicated in the pathogenesis of cloacal exstrophy. Additionally, we resequencedSLC20A1in 690 individuals with bladder exstrophy-epispadias complex (BEEC) including 84 individuals with cloacal exstrophy. We identified two additional monoallelicde novovariants. One was identified in a case-parent trio with classic bladder exstrophy, and one additional novelde novovariant was detected in an affected mother who transmitted this variant to her affected son. To study the potential cellular impact ofSLC20A1variants, we expressed them in HEK293 cells. Here, phosphate transport was not compromised, suggesting that it is not a disease mechanism. However, there was a tendency for lower levels of cleaved caspase-3, perhaps implicating apoptosis pathways in the disease. Our results suggestSLC20A1is involved in urinary tract and urorectal development and implicateSLC20A1as a disease-gene for BEEC.
  •  
3.
  •  
4.
  •  
5.
  • Aoun, M., et al. (author)
  • Antigen-presenting autoreactive B cells activate regulatory T cells and suppress autoimmune arthritis in mice
  • 2023
  • In: Journal of Experimental Medicine. - Stockholm : Karolinska Institutet, Dept of Medical Biochemistry and Biophysics. - 0022-1007 .- 1540-9538. ; 220:11
  • Journal article (peer-reviewed)abstract
    • B cells undergo several rounds of selection to eliminate potentially pathogenic autoreactive clones, but in contrast to T cells, evidence of positive selection of autoreactive B cells remains moot. Using unique tetramers, we traced natural autoreactive B cells (C1-B) specific for a defined triple-helical epitope on collagen type-II (COL2), constituting a sizeable fraction of the physiological B cell repertoire in mice, rats, and humans. Adoptive transfer of C1-B suppressed arthritis independently of IL10, separating them from IL10-secreting regulatory B cells. Single-cell sequencing revealed an antigen processing and presentation signature, including induced expression of CD72 and CCR7 as surface markers. C1-B presented COL2 to T cells and induced the expansion of regulatory T cells in a contact-dependent manner. CD72 blockade impeded this effect suggesting a new downstream suppressor mechanism that regulates antigen-specific T cell tolerization. Thus, our results indicate that autoreactive antigen-specific naive B cells tolerize infiltrating T cells against self-antigens to impede the development of tissue-specific autoimmune inflammation.
  •  
6.
  •  
7.
  •  
8.
  • He, Yibo, et al. (author)
  • A subset of antibodies targeting citrullinated proteins confers protection from rheumatoid arthritis.
  • 2023
  • In: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 14:1
  • Journal article (peer-reviewed)abstract
    • Although elevated levels of anti-citrullinated protein antibodies (ACPAs) are a hallmark of rheumatoid arthritis (RA), the in vivo functions of these antibodies remain unclear. Here, we have expressed monoclonal ACPAs derived from patients with RA, and analyzed their functions in mice, as well as their specificities. None of the ACPAs showed arthritogenicity nor induced pain-associated behavior in mice. However, one of the antibodies, clone E4, protected mice from antibody-induced arthritis. E4 showed a binding pattern restricted to skin, macrophages and dendritic cells in lymphoid tissue, and cartilage derived from mouse and human arthritic joints. Proteomic analysis confirmed that E4 strongly binds to macrophages and certainRA synovial fluid proteins such as α-enolase. The protective effect of E4 was epitope-specific and dependent on the interaction between E4-citrullinated α-enolase immune complexes with FCGR2B on macrophages, resulting in increased IL-10 secretion and reduced osteoclastogenesis. These findings suggest that a subset of ACPAs have therapeutic potential in RA.
  •  
9.
  •  
10.
  • Kissel, T, et al. (author)
  • Surface Ig variable domain glycosylation affects autoantigen binding and acts as threshold for human autoreactive B cell activation
  • 2022
  • In: Science advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 8:6, s. eabm1759-
  • Journal article (peer-reviewed)abstract
    • The hallmark autoantibodies in rheumatoid arthritis are characterized by variable domain glycans (VDGs). Their abundant occurrence results from the selective introduction of N-linked glycosylation sites during somatic hypermutation, and their presence is predictive for disease development. However, the functional consequences of VDGs on autoreactive B cells remain elusive. Combining crystallography, glycobiology, and functional B cell assays allowed us to dissect key characteristics of VDGs on human B cell biology. Crystal structures showed that VDGs are positioned in the vicinity of the antigen-binding pocket, and dynamic modeling combined with binding assays elucidated their impact on binding. We found that VDG-expressing B cell receptors stay longer on the B cell surface and that VDGs enhance B cell activation. These results provide a rationale on how the acquisition of VDGs might contribute to the breach of tolerance of autoreactive B cells in a major human autoimmune disease.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 50

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view