SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Horton Edward) srt2:(2010-2014)"

Search: WFRF:(Horton Edward) > (2010-2014)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Bray, George A., et al. (author)
  • Long-Term Safety, Tolerability, and Weight Loss Associated With Metformin in the Diabetes Prevention Program Outcomes Study
  • 2012
  • In: Diabetes Care. - : American Diabetes Association. - 1935-5548 .- 0149-5992. ; 35:4, s. 731-737
  • Journal article (peer-reviewed)abstract
    • OBJECTIVE-Metformin produced weight loss and delayed or prevented diabetes in the Diabetes Prevention Program (DPP). We examined its long-term safety and tolerability along with weight loss, and change in waist circumference during the DPP and its long-term follow-up. RESEARCH DESIGN AND METHODS-The randomized double-blind clinical trial of metformin or placebo followed by a 7-8-year open-label extension and analysis of adverse events, tolerability, and the effect of adherence on change in weight and waist circumference. RESULTS-No significant safety issues were identified. Gastrointestinal symptoms were more common in metformin than placebo participants and declined over time. During the DPP, average hemoglobin and hematocrit levels were slightly lower in the metformin group than in the placebo group. Decreases in hemoglobin and hematocrit in the metformin group occurred during the first year following randomization, with no further changes observed over time. During the DPP, metformin participants had reduced body weight and waist circumference compared with placebo (weight by 2.06 +/- 5.65% vs. 0.02 +/- 5.52%, P < 0.001, and waist circumference by 2.13 +/- 7.06 cm vs. 0.79 +/- 6.54 cm, P < 0.001 in metformin vs. placebo, respectively). The magnitude of weight loss during the 2-year double-blind period was directly related to adherence (P < 0.001). Throughout the unblinded follow-up, weight loss remained significantly greater in the metformin group than in the placebo group (2.0 vs. 0.2%, P < 0.001), and this was related to the degree of continuing metformin adherence (P < 0.001). CONCLUSIONS-Metformin used for diabetes prevention is safe and well tolerated. Weight loss is related to adherence to metformin and is durable for at least 10 years of treatment.
  •  
2.
  • Florez, Jose C., et al. (author)
  • Effects of Genetic Variants Previously Associated with Fasting Glucose and Insulin in the Diabetes Prevention Program
  • 2012
  • In: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 7:9
  • Journal article (peer-reviewed)abstract
    • Common genetic variants have been recently associated with fasting glucose and insulin levels in white populations. Whether these associations replicate in pre-diabetes is not known. We extended these findings to the Diabetes Prevention Program, a clinical trial in which participants at high risk for diabetes were randomized to placebo, lifestyle modification or metformin for diabetes prevention. We genotyped previously reported polymorphisms (or their proxies) in/near G6PC2, MTNR1B, GCK, DGKB, GCKR, ADCY5, MADD, CRY2, ADRA2A, FADS1, PROX1, SLC2A2, GLIS3, C2CD4B, IGF1, and IRS1 in 3,548 Diabetes Prevention Program participants. We analyzed variants for association with baseline glycemic traits, incident diabetes and their interaction with response to metformin or lifestyle intervention. We replicated associations with fasting glucose at MTNR1B (P<0.001), G6PC2 (P=0.002) and GCKR (P=0.001). We noted impaired beta-cell function in carriers of glucose-raising alleles at MTNR1B (P<0.001), and an increase in the insulinogenic index for the glucose-raising allele at G6PC2 (P<0.001). The association of MTNR1B with fasting glucose and impaired beta-cell function persisted at 1 year despite adjustment for the baseline trait, indicating a sustained deleterious effect at this locus. We also replicated the association of MADD with fasting proinsulin levels (P<0.001). We detected no significant impact of these variants on diabetes incidence or interaction with preventive interventions. The association of several polymorphisms with quantitative glycemic traits is replicated in a cohort of high-risk persons. These variants do not have a detectable impact on diabetes incidence or response to metformin or lifestyle modification in the Diabetes Prevention Program.
  •  
3.
  • Franks, Paul, et al. (author)
  • Common variation at PPARGC1A/B and change in body composition and metabolic traits following preventive interventions : the Diabetes Prevention Program
  • 2014
  • In: Diabetologia. - : Springer. - 0012-186X .- 1432-0428. ; 57:3, s. 485-490
  • Journal article (peer-reviewed)abstract
    • PPARGC1A and PPARGCB encode transcriptional coactivators that regulate numerous metabolic processes. We tested associations and treatment (i.e. metformin or lifestyle modification) interactions with metabolic traits in the Diabetes Prevention Program, a randomised controlled trial in persons at high risk of type 2 diabetes. We used Tagger software to select 75 PPARGCA1 and 94 PPARGC1B tag single-nucleotide polymorphisms (SNPs) for analysis. These SNPs were tested for associations with relevant cardiometabolic quantitative traits using generalised linear models. Aggregate genetic effects were tested using the sequence kernel association test. In aggregate, PPARGC1A variation was strongly associated with baseline triacylglycerol concentrations (p = 2.9 x 10(-30)), BMI (p = 2.0 x 10(-5)) and visceral adiposity (p = 1.9 x 10(-4)), as well as with changes in triacylglycerol concentrations (p = 1.7 x 10(-5)) and BMI (p = 9.9 x 10(-5)) from baseline to 1 year. PPARGC1B variation was only associated with baseline subcutaneous adiposity (p = 0.01). In individual SNP analyses, Gly482Ser (rs8192678, PPARGC1A) was associated with accumulation of subcutaneous adiposity and worsening insulin resistance at 1 year (both p < 0.05), while rs2970852 (PPARGC1A) modified the effects of metformin on triacylglycerol levels (p (interaction) = 0.04). These findings provide several novel and other confirmatory insights into the role of PPARGC1A variation with respect to diabetes-related metabolic traits. Trial registration ClinicalTrials.gov NCT00004992.
  •  
4.
  • Holman, Rury R., et al. (author)
  • Effect of Nateglinide on the Incidence of Diabetes and Cardiovascular Events
  • 2010
  • In: New England Journal of Medicine. - 0028-4793 .- 1533-4406. ; 362:16, s. 1463-1476
  • Journal article (peer-reviewed)abstract
    • BACKGROUND The ability of short-acting insulin secretagogues to reduce the risk of diabetes or cardiovascular events in people with impaired glucose tolerance is unknown. METHODS In a double-blind, randomized clinical trial, we assigned 9306 participants with impaired glucose tolerance and either cardiovascular disease or cardiovascular risk factors to receive nateglinide (up to 60 mg three times daily) or placebo, in a 2-by-2 factorial design with valsartan or placebo, in addition to participation in a lifestyle modification program. We followed the participants for a median of 5.0 years for incident diabetes (and a median of 6.5 years for vital status). We evaluated the effect of nateglinide on the occurrence of three coprimary outcomes: the development of diabetes; a core cardiovascular outcome that was a composite of death from cardiovascular causes, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure; and an extended cardiovascular outcome that was a composite of the individual components of the core composite cardiovascular outcome, hospitalization for unstable angina, or arterial revascularization. RESULTS After adjustment for multiple testing, nateglinide, as compared with placebo, did not significantly reduce the cumulative incidence of diabetes (36% and 34%, respectively; hazard ratio, 1.07; 95% confidence interval [CI], 1.00 to 1.15; P = 0.05), the core composite cardiovascular outcome (7.9% and 8.3%, respectively; hazard ratio, 0.94, 95% CI, 0.82 to 1.09; P = 0.43), or the extended composite cardiovascular outcome (14.2% and 15.2%, respectively; hazard ratio, 0.93, 95% CI, 0.83 to 1.03; P = 0.16). Nateglinide did, however, increase the risk of hypoglycemia. CONCLUSIONS Among persons with impaired glucose tolerance and established cardiovascular disease or cardiovascular risk factors, assignment to nateglinide for 5 years did not reduce the incidence of diabetes or the coprimary composite cardiovascular outcomes. (ClinicalTrials.gov number, NCT00097786.)
  •  
5.
  • McMurray, John J, et al. (author)
  • Effect of valsartan on the incidence of diabetes and cardiovascular events
  • 2010
  • In: New England Journal of Medicine. - 0028-4793 .- 1533-4406. ; 362:16, s. 1477-1490
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: It is not known whether drugs that block the renin-angiotensin system reduce the risk of diabetes and cardiovascular events in patients with impaired glucose tolerance. METHODS: In this double-blind, randomized clinical trial with a 2-by-2 factorial design, we assigned 9306 patients with impaired glucose tolerance and established cardiovascular disease or cardiovascular risk factors to receive valsartan (up to 160 mg daily) or placebo (and nateglinide or placebo) in addition to lifestyle modification. We then followed the patients for a median of 5.0 years for the development of diabetes (6.5 years for vital status). We studied the effects of valsartan on the occurrence of three coprimary outcomes: the development of diabetes; an extended composite outcome of death from cardiovascular causes, nonfatal myocardial infarction, nonfatal stroke, hospitalization for heart failure, arterial revascularization, or hospitalization for unstable angina; and a core composite outcome that excluded unstable angina and revascularization. RESULTS: The cumulative incidence of diabetes was 33.1% in the valsartan group, as compared with 36.8% in the placebo group (hazard ratio in the valsartan group, 0.86; 95% confidence interval [CI], 0.80 to 0.92; P<0.001). Valsartan, as compared with placebo, did not significantly reduce the incidence of either the extended cardiovascular outcome (14.5% vs. 14.8%; hazard ratio, 0.96; 95% CI, 0.86 to 1.07; P=0.43) or the core cardiovascular outcome (8.1% vs. 8.1%; hazard ratio, 0.99; 95% CI, 0.86 to 1.14; P=0.85). CONCLUSIONS: Among patients with impaired glucose tolerance and cardiovascular disease or risk factors, the use of valsartan for 5 years, along with lifestyle modification, led to a relative reduction of 14% in the incidence of diabetes but did not reduce the rate of cardiovascular events. (ClinicalTrials.gov number, NCT00097786.)
  •  
6.
  • Pollin, Toni I., et al. (author)
  • Genetic Modulation of Lipid Profiles following Lifestyle Modification or Metformin Treatment: The Diabetes Prevention Program
  • 2012
  • In: PLoS Genetics. - : Public Library of Science (PLoS). - 1553-7404. ; 8:8
  • Journal article (peer-reviewed)abstract
    • Weight-loss interventions generally improve lipid profiles and reduce cardiovascular disease risk, but effects are variable and may depend on genetic factors. We performed a genetic association analysis of data from 2,993 participants in the Diabetes Prevention Program to test the hypotheses that a genetic risk score (GRS) based on deleterious alleles at 32 lipid-associated single-nucleotide polymorphisms modifies the effects of lifestyle and/or metformin interventions on lipid levels and nuclear magnetic resonance (NMR) lipoprotein subfraction size and number. Twenty-three loci previously associated with fasting LDL-C, HDL-C, or triglycerides replicated (P = 0.04-1x10(-17)). Except for total HDL particles (r = -0.03, P = 0.26), all components of the lipid profile correlated with the GRS (partial |r| = 0.07-0.17, P=5x10(-5)-1x10(-19)). The GRS was associated with higher baseline-adjusted 1-year LDL cholesterol levels (beta = +0.87, SEE +/- 0.22 mg/dl/allele, P=8x10(-5), P-interaction = 0.02) in the lifestyle intervention group, but not in the placebo (beta = +0.20, SEE +/- 0.22 mg/dl/allele, P = 0.35) or metformin (beta = -0.03, SEE +/- 0.22 mg/dl/allele, P = 0.90; P-interaction = 0.64) groups. Similarly, a higher GRS predicted a greater number of baseline-adjusted small LDL particles at 1 year in the lifestyle intervention arm (beta = +0.30, SEE +/- 0.012 ln nmol/L/allele, P = 0.01, P-interaction = 0.01) but not in the placebo (beta = 20.002, SEE +/- 0.008 ln nmol/L/allele, P = 0.74) or metformin (beta = +0.013, SEE +/- 0.008 nmol/L/allele, P = 0.12; P-interaction = 0.24) groups. Our findings suggest that a high genetic burden confers an adverse lipid profile and predicts attenuated response in LDL-C levels and small LDL particle number to dietary and physical activity interventions aimed at weight loss.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view