SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Hou Jungang) srt2:(2017)"

Search: WFRF:(Hou Jungang) > (2017)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Hou, Jungang, et al. (author)
  • Active Sites Intercalated Ultrathin Carbon Sheath on Nanowire Arrays as Integrated Core-Shell Architecture : Highly Efficient and Durable Electrocatalysts for Overall Water Splitting
  • 2017
  • In: Small. - : Wiley-VCH Verlagsgesellschaft. - 1613-6810 .- 1613-6829. ; 13:46
  • Journal article (peer-reviewed)abstract
    • The development of active bifunctional electrocatalysts with low cost and earth-abundance toward oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) remains a great challenge for overall water splitting. Herein, metallic Ni4Mo nanoalloys are firstly implanted on the surface of NiMoOx nanowires array (NiMo/NiMoOx) as metal/metal oxides hybrid. Inspired by the superiority of carbon conductivity, an ultrathin nitrogen-doped carbon sheath intercalated NiMo/NiMoOx (NC/NiMo/NiMoOx) nanowires as integrated core-shell architecture are constructed. The integrated NC/NiMo/NiMoOx array exhibits an overpotential of 29 mV at 10 mA cm(-2) and a low Tafel slope of 46 mV dec(-1) for HER due to the abundant active sites, fast electron transport, low charge-transfer resistance, unique architectural structure and synergistic effect of carbon sheath, nanoalloys, and oxides. Moreover, as OER catalysts, the NC/NiMo/NiMoOx hybrids require an overpotential of 284 mV at 10 mA cm(-2). More importantly, the NC/NiMo/NiMoOx array as a highly active and stable electrocatalyst approaches approximate to 10 mA cm(-2) at a voltage of 1.57 V, opening an avenue to the rational design and fabrication of the promising electrode materials with architecture structures toward the electrochemical energy storage and conversion.
  •  
2.
  • Hou, Jungang, et al. (author)
  • Graphene Dots Embedded Phosphide Nanosheet-Assembled Tubular Arrays for Efficient and Stable Overall Water Splitting
  • 2017
  • In: ACS Applied Materials and Interfaces. - : AMER CHEMICAL SOC. - 1944-8244 .- 1944-8252. ; 9:29, s. 24600-24607
  • Journal article (peer-reviewed)abstract
    • Bifunctional electrocatalysts are highly desired for overall water splitting. Herein, the design and fabrication of three-dimensional (3D) hierarchical earth-abundant transition bimetallic phosphide arrays constructed by one-dimensional tubular array that was derived from assembling two-dimensional nanosheet framework has been reported by tailoring the Co/Ni ratio and tunable morphologies, and zero-dimensional (0D) graphene dots were embedded on Co-Ni phosphide matrix to construct 0D/2D tubular array as a highly efficient electrode in the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). On the basis of advanced merits, such as the high surface-active sites, well-dispersed graphene dots, and enhanced electron transfer capacity as well as the confinement effect of the graphene dots on the nanosheets, the integrated GDs/Co0.8Ni0.2P tubular arrays as anode and cathode exhibit excellent OER and HER performance. By use of GDs/Co0.8Ni0.2 arrays in the two-electrode setup of the device, a remarkable electrocatalytic performance for full water splitting has been achieved with a high current density of 10 mA cm-2 at 1.54 V and outstanding long-term operation stability in an alkaline environment, indicating a promising system based on nonprecious-metal electrocatalysts toward potential practical devices of overall water splitting.
  •  
3.
  • Hou, Jungang, et al. (author)
  • In Situ Phase-Induced Spatial Charge Separation in Core-Shell Oxynitride Nanocube Heterojunctions Realizing Robust Solar Water Splitting
  • 2017
  • In: Advanced Energy Materials. - : WILEY-V C H VERLAG GMBH. - 1614-6832 .- 1614-6840. ; 7:17
  • Journal article (peer-reviewed)abstract
    • Efficient spatial charge separation is critical for solar energy conversion over solid photocatalysts. The development of efficient visible-light photocatalysts has been of immense interest, but with limited success. Here, multiband core-shell oxynitride nanocube heterojunctions composed of a tantalum nitride (Ta3N5) core and nitrogen-doped sodium tantalate (NaTaON) shell have been constructed via an in situ phase-induced etching chemical strategy. The photocatalytic water splitting performance of sub-20-nm Ta3N5@NaTaON junctions exhibits an extraordinarily high photocatalytic activity toward oxygen and hydrogen evolution. Most importantly, the combined experimental results and theoretical calculations reveal that the strong interfacial Ta-O-N bonding connection as a touchstone among Ta3N5@NaTaON junctions provides a continuous charge transport pathway rather than a random charge accumulation. The prolonged photoexcited charge carrier lifetime and suitable band matching between the Ta3N5 core and NaTaON shell facilitate the separation of photoinduced electron-hole pairs, accounting for the highly efficient photocatalytic performance. This work establishes the use of (oxy)nitride heterojunctions as viable photocatalysts for the conversion of solar energy into fuels.
  •  
4.
  • Hou, Jungang, et al. (author)
  • Inorganic Colloidal Perovskite Quantum Dots for Robust Solar CO2 Reduction
  • 2017
  • In: Chemistry - A European Journal. - : Wiley-VCH Verlagsgesellschaft. - 0947-6539 .- 1521-3765. ; 23:40, s. 9481-9485
  • Journal article (peer-reviewed)abstract
    • Inorganic perovskite quantum dots as optoelectronic materials have attracted enormous attention in light-harvesting and emitting devices. However, photocatalytic conversion based on inorganic perovskite halides has not been reported. Here, we have synthesized colloidal quantum dots (QDs, 3-12 nm) of cesium lead halide perovskites (CsPbBr3) as a new type of photocatalytic material. The band gap energies and photoluminescence (PL) spectra are tunable over the visible spectral region according to quantum size effects on an atomic scale. The increased carrier lifetime revealed by time-resolved PL spectra, indicates the efficient electron-hole separation and transfer. As expected, the CsPbBr3 QDs with high selectivity of greater than 99% achieve an efficient yield of 20.9 mmolg(-1) towards solar CO2 reduction. This work has opened a new avenue for inorganic colloidal perovskite materials as efficient photocatalysts to convert CO2 into valuable fuels.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4
Type of publication
journal article (4)
Type of content
peer-reviewed (4)
Author/Editor
Sun, Licheng, 1962- (4)
Hou, Jungang (4)
Cao, Shuyan (4)
Wu, Yunzhen (4)
Sun, Yiqing (3)
Liang, Fei (2)
show more...
Lin, Zheshuai (2)
Gao, Zhanming (2)
Chen, Hong (1)
show less...
University
Royal Institute of Technology (4)
Language
English (4)
Research subject (UKÄ/SCB)
Natural sciences (3)
Engineering and Technology (1)
Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view