SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Iliev Ilian T.) srt2:(2015-2019)"

Search: WFRF:(Iliev Ilian T.) > (2015-2019)

  • Result 1-10 of 11
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Dixon, Keri L., et al. (author)
  • The large-scale observational signatures of low-mass galaxies during reionization
  • 2016
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 456:3, s. 3011-3029
  • Journal article (peer-reviewed)abstract
    • Observations of the epoch of reionization give us clues about the nature and evolution of the sources of ionizing photons, or early stars and galaxies. We present a new suite of structure formation and radiative transfer (RT) simulations from the PRACE4LOFAR project designed to investigate whether the mechanism of radiative feedback, or the suppression of star formation in ionized regions from UV radiation, can be inferred from these observations. Our source halo mass extends down to 10(8) M-circle dot, with sources in the mass range 10(8)-10(9) M-circle dot expected to be particularly susceptible to feedback from ionizing radiation, and we vary the aggressiveness and nature of this suppression. Not only do we have four distinct source models, we also include two box sizes (67 and 349 Mpc), each with two grid resolutions. This suite of simulations allows us to investigate the robustness of our results. All of our simulations are broadly consistent with the observed electron-scattering optical depth of the cosmic microwave background and the neutral fraction and photoionization rate of hydrogen at z similar to 6. In particular, we investigate the redshifted 21-cm emission in anticipation of upcoming radio interferometer observations. We find that the overall shape of the 21-cm signal and various statistics are robust to the exact nature of source suppression, the box size, and the resolution. There are some promising model discriminators in the non-Gaussianity and small-scale power spectrum of the 21-cm signal.
  •  
2.
  • Giri, Sambit K., et al. (author)
  • Bubble size statistics during reionization from 21-cm tomography
  • 2018
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 473:3, s. 2949-2964
  • Journal article (peer-reviewed)abstract
    • The upcoming SKA1-Low radio interferometer will be sensitive enough to produce tomographic imaging data of the redshifted 21-cm signal from the Epoch of Reionization. Due to the non-Gaussian distribution of the signal, a power spectrum analysis alone will not provide a complete description of its properties. Here, we consider an additional metric which could be derived from tomographic imaging data, namely the bubble size distribution of ionized regions. We study three methods that have previously been used to characterize bubble size distributions in simulation data for the hydrogen ionization fraction-the spherical-average (SPA), mean-free-path (MFP) and friends-of-friends (FOF) methods -and apply them to simulated 21-cm data cubes. Our simulated data cubes have the (sensitivity-dictated) resolution expected for the SKA1-Low reionization experiment and we study the impact of both the light-cone (LC) and redshift space distortion (RSD) effects. To identify ionized regions in the 21-cm data we introduce a new, self-adjusting thresholding approach based on the K-Means algorithm. We find that the fraction of ionized cells identified in this way consistently falls below the mean volume-averaged ionized fraction. From a comparison of the three bubble size methods, we conclude that all three methods are useful, but that the MFP method performs best in terms of tracking the progress of reionization and separating different reionization scenarios. The LC effect is found to affect data spanning more than about 10 MHz in frequency (Delta z similar to 0.5). We find that RSDs only marginally affect the bubble size distributions.
  •  
3.
  • Giri, Sambit K., et al. (author)
  • Neutral island statistics during reionization from 21-cm tomography
  • 2019
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 489:2, s. 1590-1605
  • Journal article (peer-reviewed)abstract
    • We present the prospects of extracting information about the epoch of reionization by identifying the remaining neutral regions, referred to as islands, in tomographic observations of the redshifted 21-cm signal. Using simulated data sets we show that at late times the 21-cm power spectrum is fairly insensitive to the details of the reionization process but that the properties of the neutral islands can distinguish between different reionization scenarios. We compare the properties of these islands with those of ionized bubbles. At equivalent volume-filling fractions, neutral islands tend to be fewer in number but larger compared to the ionized bubbles. In addition, the evolution of the size distribution of neutral islands is found to be slower than that of the ionized bubbles and also their percolation behaviour differs substantially. Even though the neutral islands are relatively rare, they will be easier to identify in observations with the low frequency component of the Square Kilometre Array due to their larger size and the lower noise levels at lower redshifts. The size distribution of neutral islands at the late stages of reionization is found to depend on the source properties, such as the ionizing efficiency of the sources and their minimum mass. We find the longest line of sight through a neutral region to be more than 100 comoving Mpc until very late stages (90-95 per cent reionized), which may have relevance for the long absorption trough at z = 5.6-5.8 in the spectrum of quasar ULAS J0148+0600.
  •  
4.
  • Jensen, Hannes, et al. (author)
  • The wedge bias in reionization 21-cm power spectrum measurements
  • 2016
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 456:1, s. 66-70
  • Journal article (peer-reviewed)abstract
    • A proposed method for dealing with foreground emission in upcoming 21-cm observations from the epoch of reionization is to limit observations to an uncontaminated window in Fourier space. Foreground emission can be avoided in this way, since it is limited to a wedge-shaped region in k(parallel to), k(perpendicular to) space. However, the power spectrum is anisotropic owing to redshift-space distortions from peculiar velocities. Consequently, the 21-cm power spectrum measured in the foreground avoidance window - which samples only a limited range of angles close to the line-of-sight direction - differs from the full redshift-space spherically averaged power spectrum which requires an average over all angles. In this paper, we calculate the magnitude of this 'wedge bias' for the first time. We find that the bias amplifies the difference between the real-space and redshift-space power spectra. The bias is strongest at high redshifts, where measurements using foreground avoidance will overestimate the redshift-space power spectrum by around 100 per cent, possibly obscuring the distinctive rise and fall signature that is anticipated for the spherically averaged 21-cm power spectrum. In the later stages of reionization, the bias becomes negative, and smaller in magnitude (less than or similar to 20 per cent).
  •  
5.
  • Kakiichi, Koki, et al. (author)
  • Recovering the H II region size statistics from 21-cm tomography
  • 2017
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 471:2, s. 1936-1954
  • Journal article (peer-reviewed)abstract
    • We introduce a novel technique, called 'granulometry', to characterize and recover the mean size and the size distribution of HII regions from 21-cm tomography. The technique is easy to implement, but places the previously not very well-defined concept of morphology on a firm mathematical foundation. The size distribution of the cold spots in 21-cm tomography can be used as a direct tracer of the underlying probability distribution of HII region sizes. We explore the capability of the method using large-scale reionization simulations and mock observational data cubes while considering capabilities of SquareKilometreArray 1 (SKA1) low and a future extension to SKA2. We show that the technique allows the recovery of the HII region size distribution with a moderate signal-to-noise ratio from wide-field imaging (SNR less than or similar to 3), for which the statistical uncertainty is sample variance dominated. We address the observational requirements on the angular resolution, the field of view, and the thermal noise limit for a successful measurement. To achieve a full scientific return from 21-cm tomography and to exploit a synergy with 21-cm power spectra, we suggest an observing strategy using widefield imaging (several tens of square degrees) by an interferometric mosaicking/multibeam observation with additional intermediate baselines (similar to 2-4 km) in an SKA phase 2.
  •  
6.
  • Majumdar, Suman, et al. (author)
  • Effects of the sources of reionization on 21-cm redshift-space distortions
  • 2016
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 456:2, s. 2080-2094
  • Journal article (peer-reviewed)abstract
    • The observed 21 cm signal from the epoch of reionization will be distorted along the line of sight by the peculiar velocities of matter particles. These redshift-space distortions will affect the contrast in the signal and will also make it anisotropic. This anisotropy contains information about the cross-correlation between the matter density field and the neutral hydrogen field, and could thus potentially be used to extract information about the sources of reionization. In this paper, we study a collection of simulated reionization scenarios assuming different models for the sources of reionization. We show that the 21 cm anisotropy is best measured by the quadrupole moment of the power spectrum. We find that, unless the properties of the reionization sources are extreme in some way, the quadrupole moment evolves very predictably as a function of global neutral fraction. This predictability implies that redshift-space distortions are not a very sensitive tool for distinguishing between reionization sources. However, the quadrupole moment can be used as a model-independent probe for constraining the reionization history. We show that such measurements can be done to some extent by first-generation instruments such as LOFAR, while the SKA should be able to measure the reionization history using the quadrupole moment of the power spectrum to great accuracy.
  •  
7.
  • Ross, Hannah E., et al. (author)
  • Evaluating the QSO contribution to the 21-cm signal from the Cosmic Dawn
  • 2019
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 487:1, s. 1101-1119
  • Journal article (peer-reviewed)abstract
    • The upcoming radio interferometer Square Kilometre Array (SKA) is expected to directly detect the redshifted 21-cm signal from the neutral hydrogen present during the Cosmic Dawn. Temperature fluctuations from X-ray heating of the neutral intergalactic medium can dominate the fluctuations in the 21-cm signal from this time. This heating depends on the abundance, clustering, and properties of the X-ray sources present, which remain highly uncertain. We present a suite of three new large-volume, 349 Mpc a side, fully numerical radiative transfer simulations including QSO-like sources, extending the work previously presented in Ross et al. (2017). The results show that our QSOs have a modest contribution to the heating budget, yet significantly impact the 21-cm signal. Initially, the power spectrum is boosted on large scales by heating from the biased QSO-like sources, before decreasing on all scales. Fluctuations from images of the 21-cm signal with resolutions corresponding to SKA1-Low at the appropriate redshifts are well above the expected noise for deep integrations, indicating that imaging could be feasible for all the X-ray source models considered. The most notable contribution of the QSOs is a dramatic increase in non-Gaussianity of the signal, as measured by the skewness and kurtosis of the 21-cm probability distribution functions. However, in the case of late Lyman-alpha saturation, this non-Gaussianity could be dramatically decreased particularly when heating occurs earlier. We conclude that increased non-Gaussianity is a promising signature of rare X-ray sources at this time, provided that Lyman-a saturation occurs before heating dominates the 21-cm signal.
  •  
8.
  • Ross, Hannah E., et al. (author)
  • Simulating the impact of X-ray heating during the cosmic dawn
  • 2017
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 468:4, s. 3785-3797
  • Journal article (peer-reviewed)abstract
    • Upcoming observations of the 21-cm signal from the epoch of reionization will soon provide the first direct detection of this era. This signal is influenced by many astrophysical effects, including long-range X-ray heating of the intergalactic gas. During the preceding cosmic dawn era, the impact of this heating on the 21-cm signal is particularly prominent, especially before spin temperature saturation. We present the largest volume (349 Mpc comoving = 244 h(-1) Mpc) full numerical radiative transfer simulations to date of this epoch which include the effects of helium and multifrequency heating, both with and without X-ray sources. We show that X-ray sources contribute significantly to early heating of the neutral intergalactic medium and, hence, to the corresponding 21-cm signal. The inclusion of hard, energetic radiation yields an earlier, extended transition from absorption to emission compared to the stellar-only case. The presence of X-ray sources decreases the absolute value of the mean 21-cm differential brightness temperature. These hard sources also significantly increase the 21-cm fluctuations compared to the common assumption of temperature saturation. The 21-cm differential brightness temperature power spectrum is initially boosted on large scales, before decreasing on all scales. Compared to the case of the cold, unheated intergalactic medium, the signal has lower rms fluctuations and increased non-Gaussianity, as measured by the skewness and kurtosis of the 21-cm probability distribution functions. Images of the 21-cm signal with resolution around 11 arcmin still show fluctuations well above the expected noise for deep integrations with the SKA1-Low, indicating that direct imaging of the X-ray heating epoch could be feasible.
  •  
9.
  • Shukla, Hemant, et al. (author)
  • The effects of Lyman-limit systems on the evolution and observability of the epoch of reionization
  • 2016
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 458:1, s. 135-150
  • Journal article (peer-reviewed)abstract
    • We present the first large-scale, full radiative transfer simulations of the reionization of the intergalactic medium in the presence of Lyman-limit systems (LLSs). To illustrate the impact of LLS opacity, possibly missed by previous simulations, we add either a uniform or spatially varying hydrogen bound free opacity. This opacity, implemented as the mean free path (MFP) of the ionizing photons, extrapolates the observed, post-reionization redshift dependence into the epoch of reionization. In qualitative agreement with previous studies, we find that at late times the presence of LLSs slows down the ionization fronts, and alters the size distribution of H TT regions. We quantitatively characterize the size distribution and morphological evolution of H 11 regions and examine the effects of the LLSs on the redshifted 21-cm signal from the patchy reionization. The presence of LLSs extends the ionization history by Delta z similar to 0.8. The LLS absorbers significantly impede the late-time growth of the H u regions. The position dependent LLS distribution slows reionization further and additionally limits the late growth of the ionized regions. However, there is no 'freeze out' of the H II regions and the largest regions grow to the size of the simulation volume. The 21-cm power spectra show that at large scales the power drops by a factor of 2 for 50 per cent and 75 per cent ionization stages (at k = 0.1 hMp c(-1)) reflecting the limiting effect of the LLSs on the growth of ionized patches. The statistical observables such as the rms of the brightness temperature fluctuations and the peak amplitudes of the 21-cm power spectra at large scales (k = 0.05-0.1 hMp c(-1)) are diminished by the presence of LLS.
  •  
10.
  • Vrbanec, Dijana, et al. (author)
  • Predictions for the 21 cm-galaxy cross-power spectrum observable with LOFAR and Subaru
  • 2016
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 457:1, s. 666-675
  • Journal article (peer-reviewed)abstract
    • The 21 cm-galaxy cross-power spectrum is expected to be one of the promising probes of the Epoch of Reionization (EoR), as it could offer information about the progress of reionization and the typical scale of ionized regions at different redshifts. With upcoming observations of 21 cm emission from the EoR with the Low Frequency Array (LOFAR), and of high-redshift Ly alpha emitters with Subaru's Hyper Suprime-Cam (HSC), we investigate the observability of such cross-power spectrum with these two instruments, which are both planning to observe the ELAIS-N1 field at z = 6.6. In this paper, we use N-body + radiative transfer (both for continuum and Ly alpha photons) simulations at redshift 6.68, 7.06 and 7.3 to compute the 3D theoretical 21 cm-galaxy cross-power spectrum and cross-correlation function, as well as to predict the 2D 21 cm-galaxy cross-power spectrum and cross-correlation function expected to be observed by LOFAR and HSC. Once noise and projection effects are accounted for, our predictions of the 21 cm-galaxy cross-power spectrum show clear anti-correlation on scales larger than similar to 60 h(-1) Mpc (corresponding to k similar to 0.1 h Mpc(-1)), with levels of significance p = 0.003 at z = 6.6 and p = 0.08 at z = 7.3. On smaller scales, instead, the signal is completely contaminated. On the other hand, our 21 cm-galaxy cross-correlation function is strongly contaminated by noise on all scales, since the noise is no longer being separated by its k modes.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view