SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Issazadeh Navikas Shohreh) srt2:(2002-2004)"

Search: WFRF:(Issazadeh Navikas Shohreh) > (2002-2004)

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Bäcklund, Johan, et al. (author)
  • Glycosylation of type II collagen is of major importance for T cell tolerance and pathology in collagen-induced arthritis.
  • 2002
  • In: European Journal of Immunology. - 1521-4141. ; 32:12, s. 3776-3784
  • Journal article (peer-reviewed)abstract
    • Type II collagen (CII) is a candidate cartilage-specific autoantigen, which can become post-translationally modified by hydroxylation and glycosylation. T cell recognition of CII is essential for the development of murine collagen-induced arthritis (CIA) and also occurs in rheumatoid arthritis (RA). The common denominator of murine CIA and human RA is the presentation of an immunodominant CII-derived glycosylated peptide on murine Aq and human DR4 molecules, respectively. To investigate the importance of T cell recognition of glycosylated CII in CIA development after immunization with heterologous CII, we treated neonatal mice with different heterologous CII-peptides (non-modified, hydroxylated and galactosylated). Treatment with the galactosylated peptide (galactoseat position 264) was superior in protecting mice from CIA. Protection was accompanied by a reduced antibody response to CII and by an impaired T cell response to the glycopeptide. To investigate the importance of glycopeptide recognition in an autologous CIA model, we treated MMC-transgenic mice, which express the heterologous CII epitope with a glutamic acid in position 266 in cartilage, with CII-peptides. Again, a strong vaccination potential of the glycopeptide was seen. Hence CII-glycopeptides may be the optimal choice of vaccination target in RA, since humans share the same epitope as the MMC mouse
  •  
2.
  •  
3.
  •  
4.
  • Teige, Anna, et al. (author)
  • CD1-dependent regulation of chronic central nervous system inflammation in experimental autoimmune encephalomyelitis.
  • 2004
  • In: Journal of Immunology. - 1550-6606. ; 172:1, s. 186-194
  • Journal article (peer-reviewed)abstract
    • The existence of T cells restricted for the MHC I-like molecule CD1 is well established, but the function of these cells is still obscure; one implication is that CD1-dependent T cells regulate autoimmunity. In this study, we investigate their role in experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis, using CD1-deficient mice on a C57BL/6 background. We show that CD1-/- mice develop a clinically more severe and chronic EAE compared with CD1+/+ C57BL/6 mice, which was histopathologically confirmed with increased demyelination and CNS infiltration in CD1-/- mice. Autoantigen rechallenge in vitro revealed similar T cell proliferation in CD1+/+ and CD1-/- mice but an amplified cytokine response in CD1-/- mice as measured by both the Th1 cytokine IFN-{gamma} and the Th2 cytokine IL-4. Investigation of cytokine production at the site of inflammation showed a CNS influx of TGF-{beta}1-producing cells early in the disease in CD1+/+ mice, which was absent in the CD1-/- mice. Passive transfer of EAE using an autoreactive T cell line induced equivalent disease in both groups, which suggested additional requirements for activation of the CD1-dependent regulatory pathway(s). When immunized with CFA before T cell transfer, the CD1-/- mice again developed an augmented EAE compared with CD1+/+ mice. We suggest that CD1 exerts its function during CFA-mediated activation, regulating development of EAE both through enhancing TGF-{beta}1 production and through limiting autoreactive T cell activation, but not necessarily via effects on the Th1/Th2 balance.
  •  
5.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view