SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Iwasawa K.) srt2:(2016)"

Search: WFRF:(Iwasawa K.) > (2016)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Marchesi, S., et al. (author)
  • THE CHANDRA COSMOS-LEGACY SURVEY : SOURCE X-RAY SPECTRAL PROPERTIES
  • 2016
  • In: Astrophysical Journal. - 0004-637X. ; 830:2
  • Journal article (peer-reviewed)abstract
    • We present the X-ray spectral analysis of the 1855 extragalactic sources in the Chandra COSMOS-Legacy survey catalog having more than 30 net counts in the 0.5-7 keV band. A total of 38% of the sources are optically classified type 1 active galactic nuclei (AGNs), 60% are type 2 AGNs, and 2% are passive, low-redshift galaxies. We study the distribution of AGN photon index Γ and of the intrinsic absorption based on the sources' optical classification: type 1 AGNs have a slightly steeper mean photon index Γ than type 2 AGNs, which, on the other hand, have average times higher than type 1 AGNs. We find that ∼15% of type 1 AGNs have cm-2, i.e., are obscured according to the X-ray spectral fitting; the vast majority of these sources have 1044 erg s-1. The existence of these objects suggests that optical and X-ray obscuration can be caused by different phenomena, the X-ray obscuration being, for example, caused by dust-free material surrounding the inner part of the nuclei. Approximately 18% of type 2 AGNs have cm-2, and most of these sources have low X-ray luminosities (L2-10keV < 1043 erg s-1). We expect a part of these sources to be low-accretion, unobscured AGNs lacking broad emission lines. Finally, we also find a direct proportional trend between and host-galaxy mass and star formation rate, although part of this trend is due to a redshift selection effect.
  •  
2.
  • Ranalli, P., et al. (author)
  • The 2-10 keV unabsorbed luminosity function of AGN from the LSS, CDFS, and COSMOS surveys
  • 2016
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 590
  • Journal article (peer-reviewed)abstract
    • The XMM-Large scale structure (XMM-LSS), XMM-Cosmological evolution survey (XMM-COSMOS), and XMM-Chandra deep field south (XMM-CDFS) surveys are complementary in terms of sky coverage and depth. Together, they form a clean sample with the least possible variance in instrument effective areas and point spread function. Therefore this is one of the best samples available to determine the 2-10 keV luminosity function of active galactic nuclei (AGN) and their evolution. The samples and the relevant corrections for incompleteness are described. A total of 2887 AGN is used to build the LF in the luminosity interval 1042-1046 erg s-1 and in the redshift interval 0.001-4. A new method to correct for absorption by considering the probability distribution for the column density conditioned on the hardness ratio is presented. The binned luminosity function and its evolution is determined with a variant of the Page-Carrera method, which is improved to include corrections for absorption and to account for the full probability distribution of photometric redshifts. Parametric models, namely a double power law with luminosity and density evolution (LADE) or luminosity-dependent density evolution (LDDE), are explored using Bayesian inference. We introduce the Watanabe-Akaike information criterion (WAIC) to compare the models and estimate their predictive power. Our data are best described by the LADE model, as hinted by the WAIC indicator. We also explore the recently proposed 15-parameter extended LDDE model and find that this extension is not supported by our data. The strength of our method is that it provides unabsorbed, non-parametric estimates, credible intervals for luminosity function parameters, and a model choice based on predictive power for future data.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view