SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Jankowski J) srt2:(2005-2009)"

Search: WFRF:(Jankowski J) > (2005-2009)

  • Result 1-7 of 7
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Jankowski, V, et al. (author)
  • Detection of angiotensin II in supernatants of stimulated mononuclear leukocytes by MALDI-TOF-TOF-mass spectrometric analysis
  • 2005
  • In: Hypertension. - 1524-4563. ; 46:3, s. 591-597
  • Journal article (peer-reviewed)abstract
    • Angiotensin II ( Ang II) is the major vasoactive component of the renin- angiotensin system. Several components of the renin- angiotensin system have been demonstrated in different tissues. Whereas the roles of tissue and renal renin- angiotensin system have been studied in detail, much less is known on whether the corpuscular elements of circulating blood contribute to Ang II production. Here we examined whether, in addition to vasculature, blood cells also contribute to the circulating Ang II levels. Mononuclear leukocytes were obtained from healthy subjects and were incubated. The resulting supernatant was chromatographed using different chromatographic methods. The vasoconstrictive effects of aliquots of the resulting fractions were tested. Each fraction with a vasoconstrictive effect was analyzed by mass spectrometry. In one fraction with a strong vasoconstrictive effect, Ang II was identified. Mononuclear lymphocytes produced Ang II in amounts sufficient to stimulate Ang II type 1 receptors. Moreover, in mononuclear leukocytes, renin as well as angiotensin- converting enzyme mRNA expression was detectable by RT- PCR. These findings demonstrate that mononuclear leukocytes are a source of Ang II. Ang II secretion by these cells may play a significant role in humoral vascular regulation. In conclusion, the isolation of Ang II in supernatants of mononuclear leukocytes adds a further physiological source of Ang II to the current view of angiotensin metabolism. The quantitative role of lymphocyte- derived Ang II secretion compared with the other sources of Ang II should be defined further, but the release found under the present conditions is at least sufficient to elicit vasoconstrictive effects
  •  
2.
  •  
3.
  • Jankowski, V, et al. (author)
  • Uridine adenosine tetraphosphate acts as an autocrine hormone affecting glomerular filtration rate
  • 2008
  • In: Journal of Molecular Medicine. - : Springer Science and Business Media LLC. - 0946-2716 .- 1432-1440. ; 86:3, s. 333-340
  • Journal article (peer-reviewed)abstract
    • Recently, uridine adenosine tetraphosphate (Up(4)A) was described as a strong vasoconstrictor released from endothelial cells after stimulation with mechanical stress. In this study, we isolated and identified Up(4)A from kidney tissue, and we characterized the essential varying effects of Up(4)A on the afferent and efferent arterioles. Porcine and human kidney tissue was fractionated by size exclusion chromatography, affinity chromatography, anion exchange chromatography and reverse phase chromatography. In fractions purified to homogeneity, Up(4)A was identified by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS), MALDI-LIFT fragment mass spectrometry (MALDI-TOF/TOF MS), retention-time comparison and enzymatic cleavage analysis. We analysed the release of Up(4)A from cultivated renal proximal tubule cells after stimulation of protein kinase C with oleoyl-2-acetyl-sn-glycerol (OAG). Up(4)A was identified in renal tissue, and the effect of Up(4)A on the vascular tone of isolated perfused afferent and efferent arterioles was tested. Stimulation of tubule cells with OAG increased the release rate of Up(4)A from tubule cells about tenfold. Up(4)A acts as a strong vasoconstrictive mediator on afferent arterioles, but has no significant effect on the tone of efferent arterioles, suggesting a functional role of Up(4)A as an autocrine hormone for glomerular perfusion. Because of the predominant effect of the Up(4)A on afferent arterioles, we assume that Up(4)A may decrease glomerular perfusion, intra-glomerular pressure and, hence, glomerular filtration rate. The release of Up(4)A from renal tubular cells may be an additional mechanism whereby tubular cells could affect renal perfusion. Up(4)A release may further contribute to renal vascular autoregulation mechanisms. In conclusion, as Up(4)A occurs in renal tissue and has marked effects on afferent but not efferent arterioles, Up(4)A may play a role in renal hemodynamics and possibly blood pressure regulation.
  •  
4.
  • Martinka, P, et al. (author)
  • Adenosine increases calcium sensitivity via receptor-independent activation of the p38/MK2 pathway in mesenteric arteries
  • 2008
  • In: Acta Physiologica. - : Wiley. - 1748-1708 .- 1748-1716. ; 193:1, s. 37-46
  • Journal article (peer-reviewed)abstract
    • AIM: Adenosine (Ado) restores desensitized angiotensin II-induced contractions in the renal arterioles via an intracellular, receptor-independent mechanisms including the p38 mitogen-activated protein kinase (MAPK). In the present study we test the hypothesis that MAPK-activated protein kinase 2 (MK2) mediates the Ado effect downstream from p38 MAPK resulting in an increased phosphorylation of the regulatory unit of the myosin light chain (MLC(20)). METHODS AND RESULTS: Contraction experiments were performed in rings of mesenteric arteries under isometric conditions in C57BL6 and MK2 knock out mice (MK2-/-). Ado pretreatment (10(-5) mol L(-1)) strongly increased Ang II sensitivity, calcium sensitivity and the phosphorylation of MLC(20). Treatment with Ado (3 x 10(-6) or 10(-5) mol L(-1) in between successive Ang II applications) enhanced the desensitized Ang II responses (second to fifth application). Ca(2+) transients were not effected by Ado. Further, blockade of type 1 and type 2 Ado receptors during treatment did not influence the effect. Type 3 receptor activation by inosine instead of Ado had no effect. Conversely, inhibition of nitrobenzylthioinosine-sensitive Ado transporters prevented the effects of Ado. Inhibition of p38 MAPK as well as use of MK2-/- mice prevented contractile Ado effects on the mesenteric arteries and the phosphorylation of MLC(20). CONCLUSION: The study shows that Ado activates the p38 MAPK/MK2 pathway in vascular smooth muscle via an intracellular action, which results in an increased MLC(20) phosphorylation in concert with increased calcium sensitivity of the contractile apparatus. This mechanism can significantly contribute to the regulation of vascular tone, e.g. under post-ischaemic conditions.
  •  
5.
  •  
6.
  •  
7.
  • Vanholder, Raymond, et al. (author)
  • The role of EUTox in uremic toxin research.
  • 2009
  • In: Seminars in dialysis. - 0894-0959 .- 1525-139X. ; 22:4, s. 323-328
  • Journal article (peer-reviewed)abstract
    • In this publication, we review the activities of the European Uremic Toxin Work Group (EUTox) in the field of uremic toxin research. Founded in 1999 under the umbrella of the European Society of Artificial Organs (ESAO), and active since 2000, this group focuses essentially on questions related to solute retention and removal during chronic kidney disease, and on the deleterious impact of those solutes on biological/biochemical systems. As of January 1, 2009, the group had met 28 times; it organized the third meeting, "Uremic Toxins in Cardiovascular Disease," which took place in October 2008 in Amiens, France. The current group is composed of 25 members belonging to 23 European research institutions. As of November 1, 2008, in total 69 papers had been published to which at least two different research groups belonging to EUTox have contributed in a collaborative effort. Of these, 40 papers were on original research and eight were specific EUTox reviews or position statements. A website (http://www.eutox.info) summarizes all relevant information concerning the work group. EUTox also developed an interactive uremic toxin database, where concentrations of known toxins are displayed, to be used by researchers in the field. In the future, EUTox intends to continue its focus on bench to bedside research with specific consideration of proteomics, metabonomics, secretomics, and genomics.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-7 of 7
Language
English (7)
Research subject (UKÄ/SCB)
Natural sciences (2)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view