SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Jansson Roland 1967 ) srt2:(2005-2009)"

Search: WFRF:(Jansson Roland 1967 ) > (2005-2009)

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Catford, Jane A., et al. (author)
  • Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework
  • 2009
  • In: Diversity & distributions. - : Wiley. - 1366-9516 .- 1472-4642. ; 15:1, s. 22-40
  • Journal article (peer-reviewed)abstract
    • Aim: Invasion ecology includes many hypotheses. Empirical evidence suggests that most of these can explain the success of some invaders to some degree in some circumstances. If they all are correct, what does this tell us about invasion? We illustrate the major themes in invasion ecology, and provide an overarching framework that helps organize research and foster links among subfields of invasion ecology and ecology more generally.Location: Global.Methods: We review and synthesize 29 leading hypotheses in plant invasion ecology. Structured around propagule pressure (P), abiotic characteristics (A) and biotic characteristics (B), with the additional influence of humans (H) on P, A and B (hereon PAB), we show how these hypotheses fit into one paradigm. P is based on the size and frequency of introductions, A incorporates ecosystem invasibility based on physical conditions, and B includes the characteristics of invading species (invasiveness), the recipient community and their interactions. Having justified the PAB framework, we propose a way in which invasion research could progress.Results: By highlighting the common ground among hypotheses, we show that invasion ecology is encumbered by theoretical redundancy that can be removed through integration. Using both holistic and incremental approaches, we show how the PAB framework can guide research and quantify the relative importance of different invasion mechanisms.Main conclusions: If the prime aim is to identify the main cause of invasion success, we contend that a top-down approach that focuses on PAB maximizes research efficiency. This approach identifies the most influential factors first, and subsequently narrows the number of potential causal mechanisms. By viewing invasion as a multifaceted process that can be partitioned into major drivers and broken down into a series of sequential steps, invasion theory can be rigorously tested, understanding improved and effective weed management techniques identified.
  •  
2.
  • Engström, Johanna, 1981-, et al. (author)
  • Effects of stream restoration on dispersal of plant propagules
  • 2009
  • In: Journal of Applied Ecology. - : Wiley. - 0021-8901 .- 1365-2664. ; 46:2, s. 397-405
  • Journal article (peer-reviewed)abstract
    • 1. Species immigration is vital for the success of restoring degraded ecosystems, but the effectiveness of enhancing dispersal following restoration is seldom evaluated. Running water is an important vector for plant dispersal. Frequency and duration of floods and channel-network complexity are important factors influencing propagule dispersal. In Sweden, these functions have been modified by channelization to facilitate timber floating, thus hampering emigration and immigration of riparian propagules.2. During the last 10–20 years, affected watercourses have been restored by removing barriers and replacing boulders into channels. This is hypothesized to facilitate retention of water-dispersed propagules. We studied the efficiency of propagule retention following restoration by releasing propagule mimics and by placing propagule traps in the riparian zone.3. Retention of propagule mimics was highest in sites restored with boulders and large wood. Retention occurred at both high and low flows but was most efficient during low flows when mimics were trapped by boulders and wood. Waterborne propagules ending up at such sites are unlikely to establish unless they can reach the riparian zone later. At high flows, floating propagules are more likely to reach riparian areas suitable for establishment. According to propagule traps placed at various levels of the riparian zone, deposition of plant propagules and sediments did not increase in restored sites.4. Synthesis and applications. Our study not only demonstrates that restoration of channel complexity through replacement of boulders and wood can enhance retention of plant propagules, but also it highlights the importance of understanding how restoration effects vary with flow. Most streams are restored to function optimally during median or average flows, whereas communities often are controlled by ecological processes acting during extreme flow events. We advocate that stream restoration should be designed for optimal function during those discharges under which the ecological processes in question are most important, which in this case is, during high flow.
  •  
3.
  • Malm-Renöfält, Birgitta, et al. (author)
  • Spatial and temporal patterns of species richness in a riparian landscape
  • 2005
  • In: Journal of Biogeography. - : Blackwell Publishing. - 0305-0270 .- 1365-2699. ; 32:11, s. 2025-2037
  • Journal article (peer-reviewed)abstract
    • Aim: To test for control of vascular plant species richness in the riparian corridor by exploring three contrasting (although not mutually exclusive) hypotheses: (1) longitudinal patterns in riparian plant species richness are governed by local, river-related processes independent of the regional species richness, (2) riparian plant species richness is controlled by dispersal along the river (longitudinal control), and (3) the variation in riparian plant species richness mirrors variation in regional richness (lateral control).Location: The riparian zones of the free-flowing Vindel River and its surrounding river valley, northern Sweden.Methods: We used data from three surveys, undertaken at 10-year intervals, of riparian reaches (200-m stretches of riverbank) spanning the entire river. In addition, we surveyed species richness of vascular plants in the uplands adjacent to the river in 3.75-km2 large plots along the same regional gradient. We explored the relationship between riparian and upland flora, and various environmental variables. We also evaluated temporal variation in downstream patterns of the riparian flora.Results: Our results suggest that local species richness in boreal rivers is mainly a result of local, river-related processes and dispersal along the corridor. The strongest correlation between species richness and the environment was a negative one between species number and soil pH, but pH varied within a narrow range. We did not find evidence for a correlation between species richness on regional and local scales. We found that the local patterns of species richness for naturally occurring vascular plants were temporally variable, probably in response to large-scale disturbance caused by extreme floods. Most previous studies have found a unimodal pattern of species richness with peaks in the middle reaches of a river. In contrast, on two of three occasions corresponding to major flooding events, we found that the distribution of species richness of naturally occurring vascular plants resembled that of regional diversity: a monotonic decrease from headwater to coast. We also found high floristic similarity between the riparian corridor and the surrounding landscape.Main conclusions: These results suggest that local processes control patterns of riparian species richness, but that species composition is also highly dependent on the regional species pool. We argue that inter-annual variation in flood disturbance is probably the most important factor producing temporal variability of longitudinal species richness patterns.
  •  
4.
  • Nilsson, Christer, 1951-, et al. (author)
  • Forecasting environmental responses to restoration of rivers used as log floatways : an interdisciplinary challenge
  • 2005
  • In: Ecosystems (New York. Print). - : Springer Science and Business Media LLC. - 1432-9840 .- 1435-0629. ; 8:7, s. 779-800
  • Journal article (peer-reviewed)abstract
    • Log floating in the 19th to mid 20th centuries has profoundly changed the environmental conditions in many northern river systems of the world. Regulation of flow by dams, straightening and narrowing of channels by various piers and wing dams, and homogenization of bed structure are some of the major impacts. As a result, the conditions for many riverine organisms have been altered. Removing physical constructions and returning boulders to the channels can potentially restore conditions for these organisms. Here we describe the history of log driving, review its impact on physical and biological conditions and processes, and predict the responses to restoration. Reviewing the literature on comparable restoration efforts and building upon this knowledge, using boreal Swedish rivers as an example, we address the last point. We hypothesize that restoration measures will make rivers wider and more sinuous, and provide rougher bottoms, thus improving land-water interactions and increasing the retention capacity of water, sediment, organic matter and nutrients. The geomorphic and hydraulic/hydrologic alterations are supposed to favor production, diversity, migration and reproduction of riparian and aquatic organisms. The response rates are likely to vary according to the types of processes and organisms. Some habitat components, such as beds of very large boulders and bedrock outcrops, and availability of sediment and large woody debris are believed to be extremely difficult to restore. Monitoring and evaluation at several scales are needed to test our predictions.
  •  
5.
  • Nilsson, Christer, 1951-, et al. (author)
  • Restoring Riverine Landscapes : the Challenge of Identifying Priorities, Reference States, and Techniques
  • 2007
  • In: Ecology and Society. - 1708-3087. ; 12:1, s. 16-
  • Journal article (peer-reviewed)abstract
    • This special issue of Ecology and Society on restoring riverine landscapes draws together nine presentations from the Second International Symposium on Riverine Landscapes, convened in August 2004 in Storforsen, Sweden. We summarize three themes related to river restoration: (1) setting priorities, (2) identifying relevant reference conditions, and (3) choosing appropriate techniques. We discuss ways of developing river restoration and provide examples of future needs in sustaining functioning river ecosystems that can support human societies.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view